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Prologue

Some of my colleagues have suggested that I fill in some background to what you are going to 
read about in this book. So let me introduce myself.... I was born in London, England, just before 
the start of World War II, received what is sometimes referred to as a classical education, learned 
to speak several languages, including the usual dead ones, and studied Anthropology at King's 
College, Cambridge. I have since discovered that Alan Turing had attended my college, but while 
I was there I was learning to recognize Neanderthal skulls, and hearing Edmund Leach lecture 
about the Kachin, so I regret that I cannot claim to have programmed EDSAC, the machine being 
developed at Cambridge, although I later took an aptitude test for another marvelous machine, 
the Lyons' LEO (Lyons Electronic Office), whose design was based on EDSAC's. But maybe 
computing was in the air at King's! 

In 1959 I joined IBM (UK) as an Electronic Data Processing Machines Representative. I had 
come into computers by a circuitous route: around the age of 12, I got bitten by the symbolic 
logic bug. This so intrigued me that all during my school and university years I read up on it, 
played  with  the  concepts  for  myself,  and  looked  forward  to  the  time  when  all  the  world's 
problems would be solved by the judicious rearrangement of little mathematical symbols. Having 
also been fascinated by the diversity of human languages since childhood,  the idea of really 
getting to the root of what things meant  was very exciting. It wasn't  until  later in life that I 
realized that many great minds had tried this route without much success, and that, while it is 
certainly a beguiling concept and there have been many such attempts in earlier centuries, the 
universe of human experience is too complex and dynamic, with too many interacting factors, to 
be encoded in such a simple way. This does not mean that attempts to convey knowledge to a 
computer will not work - it is just that there seem to be certain built-in limitations. The human 
functions  which  we tend to  think  of  as  being  simple,  almost  trivial,  such  as  vision,  speech 
comprehension or the ability to make one's way along a busy street, are often the hardest to 
explain to a computer. What we call common sense turns out to be quite uncommon.... 
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While symbolic logic has not delivered on its original promise of making the world's important 
decisions simpler, it is perfectly adapted to the design of computers, and I became fascinated by 
the idea of machines which could perform logical operations. This fascination has stayed with me 
during my 33 years with the IBM Corporation in three different countries (by the way, this is 
why most of the systems I will be mentioning will be IBM systems - I apologize for this, but 
that's my background!), but I've always been struck by the apparent mismatch between the power 
of these machines and the difficulty of getting them to do what we wanted. I gradually came to 
concentrate  on  one  basic  problem:  why  should  the  process  of  developing  applications  on 
computers be so difficult, when they can obviously do anything we can figure out the rules for? 

There is definitely an advantage to having cut my proverbial teeth in this field at a time when 
very few people had even heard of computers: over the intervening years I have had time to 
digest new concepts and see which of them succeeded and which failed. Over the course of three 
and a bit decades [this was written in 1994], many concepts, techniques and fads have sprung up 
with  great  attendant  fanfare,  and  have  either  faded  out  or  just  become  part  of  the  regular 
curriculum. Ideas which took a decade or two to evolve are now familiar to kids fresh out of 
university.  I got advance notice of many of these concepts, and often had time to understand 
them before they became widespread! A list of these wonders would be too long to include here, 
and perhaps only of interest to historians. Some of them fell by the wayside, but many of them 
are still around - some good and some not so good! We who were working in the field also 
certainly contributed our fair  share of techniques and fads, also some good and some not so 
good! 

I think my first enthusiasm was compiler compilers.  I first worked with a fascinating system 
called BABEL - appropriate name - which was going to make it far easier to write compilers. I 
still use some of its ideas today, 30 years later. We shall see later in this book that there are 
interesting parallels between compiler theory and the subject matter of this book, and there seems 
to be an important role for what are sometimes called "mini-languages" (I will be talking some 
more about them in Chapter 17). Certainly compiler compilers comprise a piece of the answer, 
but they did not result in the productivity improvement that we were looking for. 

I have also always been taken with interpreters - I believe my first exposure to these was BLIS 
(the Bell Laboratories Interpretive System), which made the 650 look like a sequential machine. 
Probably the characteristic of interpreters which really appeals to people is the ability to debug 
without having to change languages. Of course, some of the recent debugging tools are starting to 
bring this capability to the world of Higher Level Languages (HLLs), but the ability to just slot in 
a TYPE or "say" command and rerun a test is so impressive that all the languages which became 
really popular have always been interpreters, no matter how awkward the syntax! In a survey of 
machine cycle usage done a few years ago at IBM's Research Center at Yorktown Heights, they 
found that the vast majority of cycles were being used by CMS EXEC statements - strings of 
CMS commands glued together to do specific jobs of work. 
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Another important concept for productivity improvement is that of a reusable subroutine library. 
I also believe strongly that reuse is another key piece of the solution, but not exactly in the form 
in which we visualized it in those days. In company after company, I have seen people start up 
shared subroutine libraries with a fine flurry of enthusiasm, only to find the action slowing to a 
standstill  after  some  30  or  40  subroutines  have  been  developed  and  made  available.  Some 
companies  are  claiming much higher  numbers,  but I  suspect  these are shops which measure 
progress, and reward their people, based on how many subroutines are created and added to the 
library, rather than on whether they are actually used. Although organizational and economic 
changes are also required to really capitalize on any form of reuse, I believe there is a more 
fundamental reason why these libraries never really take off, and that is the philosophy of the von 
Neumann machine. I will be going into this in more detail in Chapter 1, but I found I was able to 
predict which subroutines would land up in these libraries, and it was always "one moment in 
time" functions, e.g. binary search, date routines, various kinds of conversions. I tried to build an 
easy-to-use,  general  purpose update (yes, I  really tried),  and I  just  couldn't  do it  (except  for 
supporting a tiny subset of all the possible variations)! This experience is what got me thinking 
about a radically different approach to producing reusable code. I hope that, as you read this 
book, you will agree that there is another approach, and that it is completely complementary to 
the old one. 

Rapid  prototyping  and the  related  idea  of  iterative  development  were  (and are  still)  another 
enthusiasm  of  mine.  Rapid  prototyping  is  a  process  of  reducing  the  uncertainties  in  the 
development process by trying things out. I believe that anything you are uncertain about should 
be prototyped: complex algorithms, unfamiliar hardware, data base structures, human interfaces 
(especially!), and so on. I believe this technique will become even more important in the next few 
decades as we move into ever more complex environments. Here again, we will have to modify 
or even abandon the old methodologies. Dave Olson's 1993 book, "Exploiting Chaos: Cashing in 
on the  Realities  of  Software  Development",  describes  a  number  of  approaches  to  combining 
iterative  development  with milestones  to  get  the  best  of  both  worlds,  plus  some fascinating 
digressions into the new concepts of chaos and "strange attractors". There are some very strange 
attractors in our business! I have also believed for some time that most prototypes should not just 
be thrown away once they have served their purpose. A prototype should be able to be "grown", 
step by step, into a full-fledged system. Since the importance of prototypes is that they reduce 
uncertainty, rewriting applications in a different language is liable to bring a lot of it back! 

The pattern of all these innovations is always the same - from the subroutine to Object-Oriented 
Programming: someone finds a piece of the answer and we get a small increment in productivity, 
but not the big break-through we have been looking for, and eventually this technique makes its 
way into the general bag of tricks that every experienced programmer carries in his or her back 
pocket. 

By the way, I should state at the outset that my focus is not on mathematical applications, but on 
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business applications - the former is a different ball-game, and one happily played by academics 
all over the world. Business applications are different, and much of my work has been to try to 
determine exactly why they should be so different, and what we can do to solve the problem of 
building and maintaining them. These kinds of applications often have a direct effect on the 
competitiveness of the companies that use them, and being able to build and maintain this type of 
application more effectively will be a win-win situation for those of us in the industry and for 
those who use our services. 

Before I start to talk about a set of concepts which, based on my experience over the last 30 
years,  I  think  really  does  provide  a  quantum  jump  in  improving  application  development 
productivity, I would like to mention something which arises directly out of my own personal 
background. Coming from an artistic background, I find I tend to think about things in visual 
terms. One of the influences in the work described in this book was a feeling that one should be 
able  to  express  applications  in  a  graphical  notation which  would take advantage of  people's 
visualization abilities. This feeling may have been helped along by exposure to a system called 
GPSS (General Purpose Simulation System). This system can be highly graphical, and it (along 
with  other  simulation  systems)  has  another  very  interesting  characteristic,  namely  that  its 
constructs  tend to  match  objects  in  the  real  world.  It  is  not  surprising  that  Simula  (another 
language originally designed for simulation)  is  viewed as one of the forerunners of many of 
today's advanced programming languages. 

Another effect of my personal orientation is a desire,  almost a preoccupation, with beauty in 
programming. While I will stress many times that programming should not be the production of 
unique pieces of cabinetry, this does not mean that programs cannot exhibit beauty. There are 
places and times in the world's history where people have invested great creativity in useful 
objects such as spoons or drinking cups. Conversely,  the needs of primitive mass-production, 
supported by a naïve view of value, resulted in factories turning out vast numbers of identical, 
artistically crude objects  (although obviously there were some exceptions),  which in turn are 
thought to have led to a deadening of the sensibilities of a whole culture. I believe that modern 
technology therefore can do more than just make our lives more comfortable - I believe it can 
actually help to bring the aesthetic back into its proper place in our life experience. 

One more comment about my personal biasses (of which I have many, so I'm told): it has always 
seemed  to  me that  application design  and building  is  predominantly  a  creative  activity,  and 
creativity is  a uniquely human ability - one that (I believe) computers  and robots will  never 
exhibit. On the other hand, any activity which bores people should be done by computers, and 
will probably be done better by them. So the trick is to split work appropriately between humans 
and machines - it is the partnership between the two that can lead to the most satisfying and 
productive era the world has ever known (I also read a lot of science fiction!). One of the points 
often missed by the purveyors of methodologies is that each stage of refinement of a design is not 
simply an expansion of information already in existence, but a creative act. We should absolutely 
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avoid reentering the same information over and over again - that's boring! - but, on the other 
hand,  we  should  never  imagine  that  any  stage  of  refinement  of  a  design  can  somehow  be 
magically done without human input. Robots are great at remembering and following rules - only 
humans create. 

Corollary I: Do not use humans for jobs computers can do better - this is a waste of human 
energy and creativity, the only real resource on this planet, and demeans the human spirit. 

Corollary  II:  Do not  expect  computers  to  provide  that  creative  spark that  only  humans can 
provide. If computers ever do become creative, they won't be computers any more - they will be 
people! And I do not consider creativity the same as random number generation.... 

The other personal slant I brought to this quest was the result of a unique educational system 
which inculcated in its victims (sorry, students) the idea that there is really no area of human 
endeavour which one should be afraid to tackle, and that indeed we all could realistically expect 
to contribute to any field of knowledge we addressed. This perhaps outdated view may have led 
me  to  rush  in  where  angels  fear  to  tread....  However,  this  pursuit  has  at  the  least  kept  me 
entertained and given my professional life a certain direction for several decades. 

In past centuries, the dilettante or amateur has contributed a great deal to the world's store of 
knowledge and beauty.  Remember,  most of the really big paradigm shifts were instigated by 
outsiders!  The word "amateur" comes from the idea of loving. One should be proud to be called 
an computing amateur! "Dilettante" is another fine word with a similar flavour - it comes from an 
Italian word meaning "to delight in". I therefore propose another theorem: if an activity isn't fun, 
humans probably shouldn't be doing it. I feel people should use the feeling of fun as a touchstone 
to see if they are on the right track. Here is a quote from my colleague, P.R. Ewing, which also 
agrees with my own experience: "The guys who turn out the most code are the ones who are 
having fun!" Too many experts are deadly serious. Play is not something we have to put away 
when we reach the state of adulthood - it is a very important way for humans to expand their 
understanding of the universe and all the interesting and delightful beings that occupy it. This 
feeling that the subject matter of this book is fun is one of the most common reactions we have 
encountered, and is one of the main things which makes my collaborators and myself believe that 
we have stumbled  on something  important.  In  what  follows I  hope  to convey some of  this 
feeling. Please forgive me if some whimsy sneaks in now and then! 
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Imagine that you have a large and complex application running in your shop, and you discover 
that you need what looks like fairly complex changes made to it in a hurry. You consult your 
programmers and they tell you that the changes will probably take several months, but they will 
take a look. A meeting is called of all the people involved - not just programmers and analysts, 
but users and operations personnel as well. The essential logic of the program is put up on the 
wall, and the program designers walk through the program structure with the group. During the 
ensuing discussion, they realize that two new modules have to be written and some other ones 
have to change places. Total time to make the changes - a week!

Quite  a  few parts  of  this  scenario  sound unlikely,  don't  they?  Users,  operations  people  and 
programmers all talking the same language - unthinkable! But it actually did happen just the way 
I described. The factor that made this experience so different from most programmers' everyday 
experience is the truly revolutionary technology I will be describing in this book. 

While this technology has been in use for productive work for the last 20 years, it has also been 
waiting in the wings, so to speak, for its right time to come on stage. Perhaps because there is a 
"paradigm shift" involved, to use Kuhn's phrase (Kuhn 1970), it has not been widely known up to 
now, but I believe now is the time to open it up to a wider public. 

This technology provides a consistent application view from high level design all the way down 
to  implementation.  It  requires  applications  to  be  built  using  reusable  "black  boxes"  and 
encourages developers to construct such black boxes, which can then improve the productivity of 
other developers. It forces developers to focus on data and its transformations, rather than starting 
with  procedural  code.  It  encourages  rapid  prototyping  and  results  in  more  reliable,  more 
maintainable  systems.  It  is  compatible  with  distributed  systems,  and  appears  to  be  on  a 
convergent path with Object-Oriented Programming. In this book, I will describe the concepts 
underlying this technology and give examples of experience gained using it. Does it sound too 
good to be true? You be the judge! In the following pages, we will be describing what I believe is 
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a  genuine  revolution  in  the  process  of  creating  application  programs  to  support  the  data 
processing requirements of companies around the world. 

Today, in the early 90's, the bulk of all business programming is done using techniques which 
have not changed much in 30 years. Most of it is done using what are often called Higher-Level 
Languages  (HLLs),  by  far  the  most  popular  of  which  is  COBOL,  the  COmmon  Business-
Oriented Language. A distant second is probably PL/I, not as widespread in terms of number of 
customers, but in use at some of the biggest organizations in North America. C appears to be 
gaining steadily in popularity, especially as it is often the first programming language students 
encounter at university. It appears to be especially convenient for writing system software, due to 
its powerful and concise pointer manipulation facilities, but by the same token, it may be less 
well adapted for writing business applications. Some languages are used by particular sectors of 
the  programming  community  or  for  certain  specialized  purposes.  There  are  also  the  "4th 
generation languages", which are higher level than the HLLs but usually more specialized. 

There are plenty of design methodologies and front-end tools to do them with, but most of these 
do not really affect the mechanics of creating programs. After the design has been done, the 
programmer still has the job of converting his or her elegant design into strings of commands in 
the chosen programming language. Although generators have had some success, by and large 
most of today's programmers painstakingly create their programs by hand, like skilled artisans 
hand-crafting  individual  pieces  of  cabinetry.  One  of  the  "grand  old  men"  of  the  computing 
fraternity, Nat Rochester, said a number of years ago that programming probably absorbs more 
creativity than any other professional pursuit, and most of it is invisible to the outside world. 
Things really haven't changed all that much since those days. There are also what might be called 
procedural or organizational approaches to improving the application development process, e.g. 
structured walk-throughs, the buddy system, chief programmer teams, third-party testing. My 
experience is  that  the approaches of this type  which have been successful  will  still  be valid 
whatever tool we eventually use for producing applications. However, if all you do is take the 
existing hand-crafting technology and add a massive bureaucracy to cross-check every chisel 
stroke and hammer blow, I believe you will only get minor improvements in your process, at a 
considerable cost in productivity and morale. What is needed instead is a fundamental change in 
the way we do things, after which we will be able to see which procedures and organizations fit 
naturally into the new world. 

It is a truism that most businesses in the Western world would stop functioning if it were not for 
the efforts of tens of thousands, if not hundreds of thousands, of application programmers. These 
people are practising a craft which most of the population does not understand, and would not be 
willing  to  do  if  it  did.  The  archetypal  programmer  is  viewed  as  a  brilliant  but  impractical 
individual who has a better rapport with computers than with people, slaving long hours at a 
terminal  which  is  at  the  very  least  damaging  to  his  or  her  eyesight.  In  fact,  of  course,  the 
programmer is the key interface between his clients, who speak the language of business, and the 
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computer  and its  systems,  which  speak  the  language  of  electrons.  The more  effectively  and 
reliably the programmer can bridge between these worlds,  the better  will  be the applications 
which he or she builds, but this requires an unusual combination of talents. If you have any of 
these paragons in your organization, guard them like the treasures they are! In what follows, one 
of the recurring themes will be that the problems with today's  programming technology arise 
almost entirely from the continuing mismatch between the problem area the programmer works 
in and the tools he or she has to work with. Only if we can narrow the gap between the world of 
users and that of application developers, can we produce applications which fit the needs of users 
and do it in a timely and cost-effective manner. 

The  significant  fact  I  have  come  to  realize  over  the  last  twenty  years  is  that  application 
programming in its present form really is hard and in fact has not progressed all that much since 
the days of the first computers. This lack of progress is certainly not due to any shortage of 
advocates of this or that shiny new tool, but very few of these wonder products have delivered 
what  was  promised.  When  I  started  in  the  business  in  1959,  we  already  had  higher-level 
languages,  interpreters  and  subroutine  calls  -  these  are  still  the  basic  tools  of  today's 
programming  professionals.  The  kind  of  programming  most  of  us  do  has  its  roots  in  the 
procedural programming that arose during the 40's and 50's: this new invention called a computer 
filled  a  growing  need  for  repetitive,  mainly  mathematical  calculations,  such  as  tide  tables, 
ballistics and census calculations. In these areas, computers were wildly successful. However, 
even then, some of the experts in this new world of computing were starting to question whether 
procedural application programming was really appropriate for building business applications. 
The  combination  of  more  and  more  complex  systems,  the  sheer  difficulty  of  the  medium 
programmers work in and the need for businesses to reduce overhead is resulting in more and 
more pressure on today's programming professionals. 

In addition,  as programmers  build new systems,  these add to the amount of resources being 
expended on maintaining them, to the point where the ability of many companies to develop new 
applications is being seriously impacted by the burden of maintaining old systems. This in turn 
adversely affects  their  ability  to  compete  in  the new competitive  global  market-place.  Many 
writers have talked about the programming backlog - the backlog of programming work that DP 
departments are planning to do but can't get to because of lack of resources. I have also heard 
people use the phrase "hidden backlog" - this is programming work that users would like to get 
done but know there's no point in even talking to their DP department about, so it tends not to 
show up in the statistics! I think this is at least partly why non-DP departments have been buying 
up PCs in recent years - they feel that having their own machines will make them independent of 
the DP department, but of course this only means they face the same old programming problems 
on their own machines! 

At one time, it was predicted that more telephone switchboard operators would be needed than 
the  total  number  of  available  young  ladies.  Of  course,  this  problem  was  solved  by  the 
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development  of  automatic  telephone  switching  systems.  Similarly,  many  people  believe  the 
present situation in computing can only be solved by a quantum jump in technology, and of 
course each new software technology claims to be the long-awaited solution. I and a number of 
other people believe that the concepts described in what follows really do have the potential to 
solve this problem, and I hope that,  as you read this book, you will  come to agree with us. 
However, they represent a true paradigm change which fundamentally changes the way we look 
at the programming process. Like many important discoveries, this new paradigm is basically 
quite simple, but far-reaching in its implications. 

Mention of a new paradigm makes one immediately think of another new paradigm which is 
growing steadily in popularity,  namely Object-Oriented Programming (usually abbreviated to 
OOP). What I am about to describe is not OOP, but bears certain similarities to it, and especially 
to the more advanced OOP concepts, specifically the concept of "active objects". In the long run, 
these two paradigms appear to be on a converging path, and, as I will be describing in a later 
chapter, I believe that it may well be possible to fuse the two sets of concepts to achieve the best 
of both worlds. In most of this book, however, I will be presenting our concepts and experience 
as they evolved historically, using our own terminology. 

After  a  few years  in  the  computer  business,  I  found  myself  puzzling  over  why  application 
programming  should  be  so  hard.  Its  complexity  is  certainly  not  the  complexity  of  complex 
algorithms or logic. From an arithmetic point of view, one seldom encounters a multiplication or 
division  in  business  programming,  let  alone  anything  as  arcane  as  a  square  root.  The  vast 
majority of business applications do such things as transforming data from one format to another, 
accumulating totals or looking up information in one file and incorporating it into another file or 
a  report.  Given what  seems like  a  fairly  simple  problem space,  I  wondered why application 
development should be so arduous and why, once built, a program should be so hard to maintain. 
Over the last few years, I and a number of other workers in the field have come to believe that 
the main cause of the problem is in fact the same thing that powered the computer revolution 
itself, namely the von Neumann computer model. 

This model is the traditional one that has been so productive over the last few decades, designed 
around a single instruction counter which walks sequentially through strings of codes deciding 
what  to do at  each step. These codes can be treated both as data (e.g.  by compilers)  and as 
commands.  This  design  is  usually,  but  not  necessarily,  combined  with  a  uniform  array  of 
memory cells from which the instructions take data, and into which they return it. As described in 
a recent article by Valiant (1990), the power of this model derives from the fact that it has acted 
as a bridge between the twin "diverse and chaotic" worlds (as Valiant calls them) of hardware 
and software, while allowing them to evolve separately. But, by the same token, its very success 
convinced  its  practitioners  that  the  problems  we  are  facing  cannot  possibly  be  due  to  any 
fundamental problems with this set of concepts. Programmers are not bright enough, they don't 
have good enough tools, they don't have enough mathematical education or they don't work hard 
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enough - I'm sure you've run into all of these explanations. I don't believe any of these are valid - 
I believe there is a far more fundamental problem - namely that, at a basic level, the medium is 
simply  inappropriate  for  the  task  at  hand.  In  fact,  when  you  look  at  them objectively,  the 
symptoms our business is experiencing now are quite characteristic of what one would expect 
when people try to do a complicated job using the wrong tools. Take a second and really try to 
imagine building a functioning automobile out of clay! It's highly malleable when wet, so you 
should be able to make anything, but after it has been fired it is very hard but very brittle! In fact 
that's quite a good analogy for the "feel" of most of our applications today! 

The time is now ripe for a new paradigm to replace the von Neumann model as the bridging 
model  between hardware and software.  The one we will  be describing is  similar  to  the one 
Valiant proposes (I'll talk about his in more detail in Chapter 27) and in fact seems to be one of a 
family of related concepts which have appeared over the last few years in the literature. The 
common concept underlying much of this work is basically that, to solve these problems, we 
have to relax the tight sequential programming style characteristic of the von Neumann machine, 
and structure programs as collections of communicating, asynchronous processes. If you look at 
applications larger than a single program or go down inside the machine, you will find many 
processes going on in parallel. It is only within a single program (job step or transaction) that you 
still find strict traditional, sequential logic. We have tended to believe that the tight control of 
execution sequence imposed by this approach is the only way to get predictable code, and that 
therefore it was necessary for reliable systems. It turns out that machines (and people) work more 
efficiently if you only retain the constraints that matter and relax the ones that don't, and you can 
do this without any loss of reliability.  The intent of this book is to try to describe a body of 
experience which has been built up using a particular set of implementations of this concept over 
the years, so I will not go into more detail at this point. In this chapter, we will be talking more 
about the history of this concept than about specific implementations or experience gained using 
them. 

Another factor which makes me think it is timely for this technology to be made public is that we 
are facing a growing crisis in application development. At the same time as new requirements are 
appearing, the underlying technology is changing faster and faster. The set of concepts I will be 
describing seems to fit well with current directions for both software and hardware. Not only can 
it support in a natural manner the requirements of distributed, heterogeneous applications, but it 
also seems an appropriate programming technology for the new multiprocessor machines being 
worked on by universities and leading-edge computer manufacturers all over the world. As the 
late Wayne Stevens, the noted writer on the subject of application design methodologies, has 
pointed out in several of his articles (e.g. Stevens 1985), the paradigm we will be describing 
provides a consistent, natural way to view applications from the workings of whole companies all 
the way down to the smallest component. Since you can describe manual applications with data-
flow diagrams, the connection between manual and system procedures can be shown seamlessly. 
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In what  follows,  I  will  be using the term "Flow-Based Programming"  (or  FBP for short)  to 
describe this new set of concepts and the software needed to support it. We have in the past used 
the term "Data Flow" as it conveys a number of the more important aspects of this technology, 
but  there  is  a  sizable  body of  published work on  what  is  called  "dataflow architectures"  in 
computer design and their associated software (for instance the very exciting work coming out of 
MIT), so the term dataflow may cause confusion in some academic circles. It was also pointed 
out to me a few years ago that, when control flow is needed explicitly, FBP can provide it by the 
use  of  such  mechanisms  as  triggers,  so  the  term  Flow-Based  Programming  avoids  the 
connotation that we cannot do control flow. This is not to say that the two types of data flow do 
not  have  many  concepts  in  common  -  dataflow  computer  architectures  arise  also  from the 
perception that the von Neumann machine design that has been so successful in the past must be 
generalized if we are to move forward, whether we are trying to perform truly huge amounts of 
computation such as weather  calculations or simply produce applications which are easier to 
build and maintain. 

One significant difference between the two schools, at least at this time, is that most of the other 
data flow work has been mathematically oriented, so it tends to work with numbers and arrays of 
numbers. Although my early data flow work during the late 60s also involved simple numeric 
values travelling through a network of function blocks, my experience with simulation systems 
led me to the realization that it would be more productive in business applications to have the 
things which flow be structured objects, which I called "entities". This name reflected the idea 
that these structured objects tended to represent entities in the outside world. (In our later work, 
we  realized  that  the  name  "entity"  might  cause  confusion  with  the  idea  of  entities  in  data 
modelling, although there are points of resemblance, so we decided to use a different word). Such 
a system is also, not coincidentally, a natural design for simulating applications, so the distinction 
between applications and their simulations becomes much less significant than in conventional 
programming. You can think of an entity as being like a record in storage, but active (in that it 
triggers events), rather than passive (just being read or written). Entities flow through a network 
of processes, like cars in a city, or boats in a river system. They differ from the mathematical 
tokens of dataflow computers or my early work chiefly in that they have structure: each entity 
represents an object with attributes, for example an employee will have attributes such as salary, 
date of hire, manager, etc. As you read this book, it should become clear why there has to be at 
least one layer of the application where the entities move as individual units, although it may 
very well be possible to integrate the various dataflow approaches at lower levels. 

At  this  point  I  am going  to  have  to  describe  FBP briefly,  to  give  the  reader  something  to 
visualize, but first a caveat: the brief description that follows will probably not be enough to let 
you picture what FBP is and how it does it. If we don't do this at this point, however, experience 
shows that  readers  find it  hard to relate  what  I  am describing to their  own knowledge.  The 
reverse risk is that they may jump to conclusions which may prevent them from seeing what is 
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truly new about the concepts I will be describing later. I call this the "It's just..." syndrome. 

In conventional programming, when you sit down to write a program, you write code down the 
page - a linear string of statements describing the series of actions you want the computer to 
execute.  Since  we are  of  course  all  writing  structured  code now,  we start  with  a  main line 
containing mostly subroutine calls, which can then be given "meaning" later by coding up the 
named subroutines. A number of people have speculated about the possibility of instead building 
a program by just plugging prewritten pieces of logic together. This has sometimes been called 
'Legoland' programming. Even though that is essentially what we do when we use utilities, there 
has  always  been  some  doubt  whether  this  approach  has  the  power  to  construct  large  scale 
applications, and, if it has, whether such applications would perform. I now have the pleasure to 
announce that the answer is 'Yes' to both these questions! 

The "glue" that FBP uses to connect the pieces together is an example of what Yale's Gelernter 
and  Carriero  (1992)  have  called  a  "coordination  language".  I  feel  the  distinction  between 
coordination languages and procedural languages is a useful one, and helps to clarify what is 
different about FBP. Conventional programming languages instruct the machine what logic to 
execute; coordination languages tell the machine how to coordinate multiple modules written in 
one or several programming languages. There is quite a bit  of published material  on various 
approaches to coordination, but much of that work involves the use of special-purpose languages, 
which  reduces the  applicability  of  these concepts  to  traditional  languages and environments. 
Along with Gelernter and Carriero, I feel a better approach is to have a language-independent 
coordination notation, which can coordinate modules written in a variety of different procedural 
languages. The individual modules have to have a common Application Programming Interface 
to let them talk to the coordination software, but this can be relatively simple. 

Coordination and modularity are two sides of the same coin, and several years ago Nate Edwards 
of IBM coined the term "configurable modularity" to denote an ability to reuse independent 
components  just  by  changing  their  interconnections,  which  in  his  view  characterizes  all 
successful  reuse  systems,  and  indeed  all  systems  which  can  be  described  as  "engineered". 
Although I am not sure when Nate first brought the two words "configurable" and "modularity" 
together, the report on a planning session in Palo Alto in 1976 uses the term, and Nate's 1977 
paper  (Edwards  1977)  contains  both  the  terms  "configurable  architecture"  and  "controlled 
modularity". While Nate Edwards' work is fairly non-technical and pragmatic, his background is 
mainly in hardware,  rather  than software,  which may be why his work has not received the 
attention it deserves. One of the important characteristics of a system exhibiting configurable 
modularity, such as most modern hardware or Flow-Based Programming, is that you can build 
systems out of "black box" reusable modules, much like the chips which are used to build logic 
in hardware. You also, of course, have to have something to connect them together with, but they 
do not have to be modified in any way to make this happen. Of course, this is characteristic of 
almost all the things we attach to each other in real life - in fact, almost everywhere except in 
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conventional  programming.  In  FBP,  these  black  boxes  are  the  basic  building  blocks  that  a 
developer  uses  to  build  an  application.  New  black  boxes  can  be  written  as  needed,  but  a 
developer  tries  to  use  what  is  available  first,  before  creating  new components.  In  FBP,  the 
emphasis shifts from building everything new to connecting preexisting pieces and only building 
new when building a new component is cost-justified. Nate Edwards played a key role in getting 
the hardware people to follow this same principle - and now of course, like all great discoveries, 
it seems that we have always known this! We have to help software developers to move through 
the same paradigm shift. If you look at the literature of programming from this standpoint, you 
will be amazed at how few writers write from the basis of reuse - in fact the very term seems to 
suggest an element of surprise, as if reuse were a fortuitous occurrence that happens seldom and 
usually by accident!  In real life, we use a knife or a fork - we don't reuse it! 

We will be describing similarities between FBP and other similar pieces of software in later 
chapters, but perhaps it would be useful at this point to use DOS pipes to draw a simple analogy. 
If you have used DOS you will know that you can take separate programs and combine them 
using a vertical bar (|), e.g. 
A | B

This is a very simple form of what I have been calling coordination of separate programs. It tells 
the system that you want to feed the output of A into the input of B, but neither A nor B have to 
be  modified  to  make  this  happen.  A  and  B  have  to  have  connection  points  ("plugs"  and 
"sockets")  which  the  system  can  use,  and  of  course  there  has  to  be  some  software  which 
understands the vertical bar notation and knows what to do with it. FBP broadens this concept in 
a number of directions which vastly increase its power. It turns out that this generalization results 
in a very different approach to building applications, which results in systems which are both 
more reliable and more maintainable. In the following pages I hope to be able to prove this to 
your satisfaction! 

The FBP systems which have been built over the last 20 years have therefore basically all had the 
following components: 

• a number of precoded, pretested functions, provided in object code form, not source code 
form ("black boxes") - this set is open-ended and (hopefully) constantly growing 

• a "Driver" - a piece of software which coordinates the different independent modules, and 
implements  the  API  (Application  Programming  Interface)  which  is  used  by  the 
components to communicate with each other and with the Driver 

• a notation for specifying how the components are connected together into one or more 
networks (an FBP application designer starts with pictures, and then converts them into 
specifications to be executed by the Driver) 

• this  notation can be put into a file  for execution by the Driver  software.  In the most 
successful implementation of FBP so far (DFDM - described in the next section of this 
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chapter), the network could either be compiled and link edited to produce an executable 
program,  or  it  could  be  interpreted  directly  (with  of  course  greater  initialization 
overhead). In the interpreted mode, the components are loaded in dynamically, so you can 
make changes and see the results many times in a few minutes. As we said before, people 
find this mode extremely productive. Later, when debugging is finished, you can convert 
the interpretable  form to the  compilable  form to  provide better  performance for  your 
production version. 

• procedures to enable you to convert, compile and package individual modules and partial 
networks 

• documentation (reference and tutorial) for all of the above 

In the above list I have not included education - but of course this is probably the most important 
item of all. To get the user started, there is a need for formal education - this may only take a few 
days or weeks, and I hope that this book will get the reader started on understanding many of the 
basic  concepts.  However,  education  also  includes  the  practical  experience  that  comes  from 
working  with  many  different  applications,  over  a  number  of  months  or  years.  In  this  area 
especially, we have found that FBP feels very different from conventional programming. Unlike 
most other professions, in programming we tend to underestimate the value of experience, which 
may in fact be due to the nature of the present-day programming medium. In other professions 
we do not recommend giving a new practitioner a pile of books, and then telling him or her to go 
out  and do brain surgery, build a bridge, mine gold or sail  across the Atlantic.  Instead it  is 
expected that there will be a series of progressive steps from student or apprentice to master. 
Application development using FBP feels much more like an engineering-style discipline: we are 
mostly  assembling structures  out  of  preexisting components  with well-defined specifications, 
rather than building things from scratch using basic raw materials. In such a medium, experience 
is key: it takes time to learn what components are available, how they fit together and what trade-
offs can be made. However, unlike bridge-builders, application developers using FBP can also 
get simple applications working very fast, so they can have the satisfaction of seeing quite simple 
programs do non-trivial things very early. Education in FBP is a hands-on affair, and it is really a 
pleasure seeing people's reactions when they get something working without having to write a 
line of code! 

Now  that  graphics  hardware  and  software  have  become  available  at  reasonable  cost  and 
performance, it seems very desirable to have graphical front-ends for our FBP systems. Since 
FBP is a highly visual notation, we believe that a graphical front-end will make it even more 
usable. Some prototype work has already been done along these lines and seems to bear this idea 
out. Many potential users of FBP systems will already have one or more graphical design tools, 
and, as we shall see, there is an especially good match between Structured Analysis and FBP, so 
that it seems feasible, and desirable, to base FBP graphical tools on existing graphical tools for 
doing Structured Analysis,  with  the appropriate  information added for  creating running FBP 
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programs. 

Now I  feel  it  would  be useful  to  give  you  a  bit  of  historical  background on FBP:  the  first 
implementation of this concept was built by myself in 1969 and 1970 in Montreal, Quebec. This 
proved very productive - so much so that it was taken into a major Canadian company, where it 
was used for all the batch programming of a major on-line system. This system was called the 
Advanced Modular Processing System (AMPS). This system and the experience gained from it 
are described in a fair amount of detail in an article I wrote a few years later for the IBM Systems 
Journal (Morrison 1978). I am told this was the first article ever published in the Systems Journal 
by an author from what was then called the Americas/Far East area of IBM (comprising Canada, 
South America and the Far East). 

Although the concepts are not well known, they have actually been in the public domain for 
many years. The way this happened is as follows: in late 1970 or early '71 I approached IBM 
Canada's Intellectual Property department to see if we could take out a patent on the basic idea. 
Their recommendation, which I feel was prescient, was that this concept seemed to them more 
like a law of nature, which is not patentable. They did recommend, however, that I write up a 
Technical Disclosure Bulletin (TDB), which was duly published and distributed to patent offices 
world-wide (Morrison 1971). A TDB is a sort of inverse patent - while a patent protects the 
owner but requires him or her to try to predict all possible variations on a concept, a TDB puts a 
concept into the public domain, and thereby protects the registering body from being restricted or 
impeded in the future in any use they may wish to make of the concept. In the case of a TDB, it 
places the onus on someone else who might be trying to patent something based on your concept 
to prove that their variation was not obvious to someone "skilled in the art". 

Towards  the  end of  the 80's,  Wayne  Stevens and I  jointly  developed  a  new version of  this 
software, called the Data Flow Development Manager (DFDM). It is described in Appendix A of 
Wayne Stevens' latest book (Stevens 1991) (which, by the way, contains a lot of good material on 
application design techniques in general). What I usually refer to in what follows as "processes" 
were called "coroutines" in DFDM, after Conway (1963), who described an early form of this 
concept in a paper back in the 60's, and foresaw even then some of its potential. "Coroutine" is 
formed from the word "routine" together with the Latin prefix meaning "with", as compared with 
"subroutine",  which is  formed with  the  prefix  meaning "under".  (Think of  "cooperative"  vs. 
"subordinate"). 

DFDM was used for a number of projects (between 40 and 50) of various sizes within IBM 
Canada. A few years later, Kenji Terao got a project started within IBM Japan to support us in 
developing an improved version for the Japanese market. This version is, at the time of writing, 
the  only  dialect  of  FBP  which  has  been  made  available  in  the  market-place,  and  I  believe 
enormous credit is due to Kenji and all the dedicated and forward-looking people in IBM Japan 
who helped to make this happen. While this version of DFDM was in many ways more robust or 
"industrial strength" than the one which we had been using within IBM Canada, much of the 
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experience which I will be describing in the following pages is based on what we learned using 
the  IBM  Canada  internal  version  of  DFDM,  or  on  the  still  earlier  AMPS  system.  Perhaps 
someone will write a sequel to this book describing the Japanese experience with DFDM... 

Last, but I hope not least, there is a PC-based system written in C, which attempts to embody 
many of the best ideas of its ancestors. [Reference to HOMEDATA in book removed from this 
web  page,  as  they  are  (to  the  best  of  my  knowledge)  no  longer  involved  in  this  effort.]  It 
[THREADS] has been available since the summer of 1993, running on Intel-based machines. It 
has been tested on 268, 386 and 486-based machines. Since it is written in C, we are hoping that 
it will also be possible to port it later to other versions of C, although there is a small amount of 
environment-dependent code which will have to be modified by hand. This software is called 
THREADS - THREads-based Application Development System (I love self-referential names!). 
Like DFDM, it  also has interpreted and compiled versions, so applications can be developed 
iteratively,  and  then  compiled  to  produce  a  single  EXE file,  which  eliminates  the  network 
decoding phase. 

The terminology used in this book is not exactly the same as that used by AMPS and DFDM, as a 
number of these terms turned out to cause confusion. For instance, the data chunks that travel 
between the asynchronous processes were called "entities" in AMPS and DFDM, but, as I said 
above,  this  caused  confusion  for  people  experienced  in  data  modelling.  They  do  seem  to 
correspond with the "entities" of data modelling, but "entities" have other connotations which 
could be misleading. "Objects" would present other problems, and we were not comfortable with 
the idea of creating totally new words (although some writers have used them effectively). The 
"tuples" of Carriero and Gelernter's Linda (1989) are very close, but this name also presents a 
slightly different image from the FBP concept. We therefore decided to use the rather neutral 
term "information packet" (or "IP" for short) for this concept. This term was coined as part of 
work that we did following the development of DFDM, in which we also tied FBP concepts in 
with other work appearing in the literature or being developed in other parts of IBM. Some of the 
extensions to the basic AMPS and DFDM substructure that I will be talking about later were also 
articulated during this period. When I need to refer to ideas drawn from this work I will use the 
name FPE (for Flow-Based Programming Environment), although that is not the acronym used 
by that project.  THREADS follows this revised terminology, and includes a number of ideas 
from FPE. 

As I stated in the prologue, for most of my 33 years in the computer business I have been almost 
exclusively involved with business applications. Although business applications are often more 
complex than scientific applications, the academic community generally has not shown much 
interest in this area up until now. This is a "catch 22" situation, as business would benefit from 
the work done in academia, yet academia (with some noteworthy exceptions) tends not to regard 
business programming as an interesting area to work in. My hope is that FBP can act as a bridge 
between these two worlds, and in later chapters I will be attempting to tie FBP to other related 
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theoretical work which working programmers probably wouldn't normally encounter. My reading 
in the field suggests that FBP has sound theoretical foundations, and yet  it can perform well 
enough that you can run a company on it, and it is accessible to trainee programmers (sometimes 
more easily than for experienced ones!). AMPS has been in use for 20 years, supporting one of 
the biggest companies in North America, and as recently as this year (1992), one of their senior 
people told me, "AMPS has served us well, and we expect it will continue to do so for a long 
time to come." Business systems have to evolve over time as the market requirements change, so 
clearly their system has been able to grow and adapt over the years as the need arose - this is a 
living  system,  not  some  outdated  curiosity  which  has  become obsolete  with  the  advance  of 
technology. 

And now I would like to conclude this chapter with an unsolicited testimonial from a DFDM 
user, which we received a few years ago: 

"I have a requirement to merge 23 ... reports into one .... As all reports are of different 
length and block size this is more difficult  in a conventional PLI environment.  It 
would have required 1 day of work to write the program and 1 day to test it. Such a 
program would  use  repetitive  code.  While  drinking  coffee  1  morning  I  wrote  a 
DFDM network to do this. It was complete before the coffee went cold [my italics]. 
Due to the length of time from training to programming it took 1 day to compile the 
code. Had it not been for the learning curve it could have been done in 5 minutes. 
During testing a small error was found which took 10 minutes to correct. As 3 off-
the-shelf coroutines were used, PLI was not required. 2 co-routines were used once, 
and 1 was used 23 times. Had it not been for DFDM, I would have told the user that 
his requirement was not cost justified. It took more time to write this note than the 
DFDM network."

Notice that in his note, Rej (short for Réjean), who, by the way, is a visually impaired application 
developer with many years of experience in business applications, mentioned all the points that 
were significant to him as a developer - he zeroed right in on the amount of reuse he was getting, 
because functions he could get right off the shelf were ones he didn't  have to write, test and 
eventually maintain! In DFDM, "coroutines" are the basic building blocks, which programmers 
can hook together to build applications. They are either already available ("on the shelf"), or the 
programmer can write new ones, in which case he or she will naturally try to reuse them as often 
as possible - to get the most bang for the proverbial buck. Although it is not very hard to write 
new PL/I coroutines, the majority of application developers don't want to write new code - they 
just want to get their applications working for the client, preferably using as little programming 
effort as will suffice to get a quality job done. Of course there are always programmers who love 
the process of programming and, as we shall see in the following pages, there is an important role 
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for them also in this new world which is evolving. 

Rej's  note was especially  satisfying  to us because he uses special  equipment which converts 
whatever is on his screen into spoken words. Since FBP has always seemed to me a highly visual 
technique, I had worried about whether visually impaired programmers would have any trouble 
using it, and it was very reassuring to find that Rej was able to make such productive use of this 
technology. In later discussions with him, he has stressed the need to keep application structures 
simple. In FBP, you can use hierarchic decomposition to create multiple layers, each containing a 
simple structure, rather than being required to create a single, flat, highly complex structure. In 
fact,  structures which are so complex that  he would have trouble with them are difficult  for 
everyone. He also points out that tools which he would find useful, such as something which can 
turn network diagrams into lists of connections, would also significantly assist normally sighted 
people as they work with these structures. 

Rej's point about the advantages of keeping the structures simple is also borne out by the fact that 
another application of DFDM resulted in a structure of about 200 processes, but the programmer 
involved (another very bright individual) never drew a single picture! He built it up gradually 
using  hierarchical  decomposition,  and it  has  since  had  one  of  the  lowest  error  rates  of  any 
application in the shop. I hope that, as you read on, you will be able to figure out some of the 
reasons for this high level of reliability for yourself. 

In what follows, I will be describing the main features of FBP and what we have learned from 
developing and using its various implementations. Information on some of these has appeared in 
a number of places and I feel it is time to try to pull together some of the results of 20 years of 
experience with these concepts into a single place, so that the ideas can be seen in context. A vast 
number of papers have appeared over the years, written by different writers in different fields of 
computing, which I believe are all various facets of a single diamond, but I hope that, by pulling 
a lot of connected ideas together in one place, the reader will start to get a glimpse of the total 
picture. Perhaps there is someone out there who is waiting for these ideas, and will be inspired to 
carry them further, either in research or in the marketplace! 
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In the Prologue I alluded to the concept of compiler compilers. At the time I was most interested 
in them (the mid-60s),  the accepted wisdom was that more sophisticated compilers  were the 
answer to the productivity problem. It was clear to everyone that an expression like 

W = (X + Y) / (Z + 3)

was infinitely superior to the machine language equivalent, which might look something like the 
following: 
LOAD Z
ADD 3
STORE TEMP
LOAD X
ADD Y
DIV TEMP
STORE W

This is a made-up machine with a single accumulator, but you get the general idea. One of the 
reasons the syntax shown on the first line could effectively act as a bridge between humans and 
computers  was  that  it  was  syntactically  clean,  and  based  on  a  solid,  well-understood, 
mathematical foundation - namely arithmetic... with the exception of a rather strange use of the 
equals sign! 

During this period it was not unreasonable to expect that this expressive power could be extended 
into other functions that machines needed to perform. This seemed to be supported by the fact 
that, although I/O was getting more complex to program at the machine language level, operating 
systems were coming on stream which still  allowed the programmer to essentially write one 
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statement to execute a simple I/O operation. On the IBM 1401 a Read Card command consisted 
of one instruction and also one character! MVS's GET, on the other hand, might cause several 
hundreds or thousands of machine language instructions to be executed, but the programmer still 
basically wrote one statement. 

On this foundation, we started getting one programming language after another: COBOL was 
going  to  be  the  language  that  enabled  the  person  in  the  street,  or  at  least  managers  of 
programmers, to do programming! Algol became a program-level documentation standard for 
algorithms. IBM developed PL/I (I worked on one rather short-lived version of that);  people 
developed compilers in their basements; graduate students wrote compilers for their theses at 
universities (they still do). There was always the feeling that one of these languages was going to 
be the key to unlocking the productivity that we all felt was innate in programmers. While it is 
true that the science of compiler writing advanced by leaps and bounds, by and large programmer 
productivity (at least in business application development) did not go up, or if it did, it soon 
plateaued at a new level. 

COBOL and PL/I were general-purpose compilers. There were also many languages specialized 
for certain jobs: simulation languages, pattern-matching languages, report generation languages. 
And let us not forget APL - APL is an extremely powerful language, and it also opened up arcane 
areas of mathematics like matrix handling for those of us who had never quite understood it in 
school.  Being  able  to  do  a  matrix  multiply  in  5  key-strokes  (A+.×B) is  still  a  level  of 
expressiveness  that  I  think  few  programming  languages  will  ever  be  able  to  match!  Its 
combination of sheer power in the mathematical area and the fact that there was no compile-time 
typing allowed one to get interesting programs up and running extremely fast.  I  once read a 
comment in a mathematical paper that the author didn't think the work would have been possible 
without  APL  -  and  I  believe  him.  Although  it  was  used  a  certain  amount  in  business  for 
calculation-oriented programming, especially in banking and insurance, and also as a base for 
some  of  the  early  query-type  languages,  APL did  little  for  most  commercial  programming, 
plodding along using COBOL, and more recently PL/I, PASCAL, BASIC... 

APL also illustrates in a different way the importance of minimizing the "gap" between idea and 
its expression - along with all of the most popular programming languages, it is an interpreter, 
which means that you can enter the program, and then immediately run it, without having to go 
through a compile and/or link step. Granted, this is more perception than actual fact (as one can 
build compile steps which are so fast that the user doesn't perceive them as a barrier), but the fact 
remains that some very awkward languages have become immensely popular because they did 
not require a compile step. A lot of the CPU cycles used in the industry on IBM machines are 
being used to run CMS EXECs or TSO CLISTs. Both of these are simple languages which let 
you stitch commands together into runnable "programs". Both are yielding nowadays to Mike 
Cowlishaw's REXX, which occupies the same niche, but also provides a vastly more powerful set 
of language constructs, to the point where one can build pretty complex programs with it. REXX 
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is also interpretive, so it also allows one to change a program and see the results of that change 
very quickly. 

Why didn't languages (even the interpretive ones) improve productivity more than they did? I 
will be exploring this more in the next chapter, but one thing that I noticed fairly early on was 
that they didn't  do much for logic (IF, THEN, ELSE, DO WHILE, etc.).  For many kinds of 
business programming, what pushes up the development time is the logic - there actually may not 
be much in the way of straight calculations.  A logical choice can be thought of as a certain 
amount of work, whether you write it like this: 

IF x > 2
THEN
 result = 1
ELSE
 result = 2
ENDIF

or like this: 
result = (x>2) ? 1 : 2;

or even draw it as a Nassi-Shneiderman or Chapin chart. One can argue that, because both of the 
above phrasings involve one binary decision, they involve approximately the same amount of 
mental  work.  The more complex the logic,  the more difficult  the coding.  In fact,  there is  a 
complexity measure used quite widely in the industry called McCabe's Cyclomatic complexity 
measure, which is based very directly on the number of binary decisions in a program. However, 
in  our  work  we  have  discovered  that  the  amount  of  logic  in  conventional  programming  is 
reducible,  because  much  of  the  logic  in  conventional  programming  has  to  do  with  the 
synchronization of data, rather than with business logic. Since FBP eliminates the need for a lot 
of this synchronization logic, this means that FBP actually does reduce the amount of logic in 
programs. 

A number of writers have made the point that productivity is only improved if you can reduce the 
number of statements needed to represent an idea. Put another way, you have to reduce the "gap" 
between the language of business and the language of computers. What is the lower limit on the 
number  of  bits  or  keystrokes  to  represent  an  idea,  though?  If  a  condition  and  its  branches 
comprise one "idea", then there is a lower limit to how compactly it can be represented. If it is 
part of a greater "idea", then there is a hope of representing it more compactly. From Information 
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Theory we learn that the number of bits needed to represent something is the log of the number 
of alternatives you have to choose between. If something is always true, there is no choice, so it 
doesn't need any bits to represent it. If you have 8 choices, then it takes 3 (i.e. log of 8 to the base 
2) bits to represent it. In programming terms: if you only allow an individual two marital states, 
you only need 1 bit (log of 2 to the base 2). If you want to support a wider "universe", where 
people  may  be  single,  married,  divorced,  widowed,  or  common  law  spouses,  that  is  five 
alternatives, so you need 3 bits (2 bits are not enough as they only allow 4 choices). And they're 
not mutually exclusive, so you could need even more bits! 

This in turn leads to our next idea: one way to reduce the information requirements of a program 
is to pick options from a more limited universe. However, the user has to be willing to live within 
this  more circumscribed universe.  I  remember  an accounting package that  was developed in 
Western Canada, which defined very tightly the universe in which its customers were supposed 
to operate. Within that universe, it provided quite a lot of function. I believe that its main file 
records were always 139 bytes long (or a similar figure), and you couldn't change them. If you 
asked them about it, the developers' reaction would be: why would anyone want to? Somewhat 
predictably, it didn't catch on because many customers felt it was too limited. The example that 
sticks in my memory was that of one customer who wanted to change a report title and had to be 
told it couldn't be done. Again, why would anyone feel that was so important? Well, it seems that 
customers, especially big ones, tend to feel that report headers should look the way they want, 
rather than the way the package says they are going to look. Our experience was that smaller 
customers  might  be  willing  to  adapt  their  business  to  the  program,  especially  if  you  could 
convince them that you understood it better than they did, but bigger customers expected the 
program to adapt to their business. And it was really quite a powerful package for the price! I 
learned a lot from that, and the main thing was that a vendor can provide standard components, 
but the customer has to be able to write custom components as well. Even if it costs more to do 
the latter, it is the customer's choice, not the vendor's. And that of course means that the customer 
must be able to visualize what the tool is doing. This is also related to the principle of Open 
Architecture: no matter how impressive a tool is, if it can't talk to other tools, it isn't going to 
survive over the long haul (paraphrased from Wayne Stevens). 

The  above  information-theoretic  concept  is  at  the  root  of  what  are  now  called  4GLs  (4th 
Generation  Languages).  These  provide  more  productivity  by  taking  advantage  of  frequently 
appearing application patterns, e.g. interactive applications. If you are writing applications to run 
in an interactive system, you know that you are going to keep running into patterns like: 

• read a key entered by the user onto a screen 
• get the correct record, or generate a message if the record does not exist 
• display selected fields from that record on the screen. 

Another one (very often the next one) might be: 
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• display the fields of a record 
• determine which ones were changed by the user 
• check for incorrect formats, values, etc. 
• if everything is OK, 

write the updated record back 
• else  

display the appropriate error message(s) 

Another very common pattern (especially in what is called "decision support" or "decision assist" 
type applications) occurs when a list is presented on the screen and the user can select one of the 
items or scroll up or down through the list (the list may not all fit on one screen). Some systems 
allow more than one item to be selected, which are then processed in sequence. 

These recurrent patterns occur so frequently that it makes a lot of sense to provide skeletons for 
these different scenarios, and declarative (non-procedural) ways of having the programmer fill in 
the information required to flesh them out. 

The attractiveness of 4GLs has also been enhanced by the unattractiveness of IBM's standard 
screen definition facilities! The screen definition languages for both IMS and CICS are coded up 
using S/370 Assembler macros (high-level statements which generate the constants which define 
all the parts of a screen). This technique allows them to provide a lot of useful capabilities, but 
screen definitions written this way are hard to write and even harder to maintain! Say you want to 
make a field longer and move it down a few lines, you find yourself changing a large number of 
different values which all have to be kept consistent (the values are often not even the same, but 
have to be kept consistent according to some formula). I once wrote a prototyping tool which 
allowed screens to be specified in WYSIWYG (What You See Is What You Get) format, and 
could then be used to generate both the screen definition macros and also all the HLL declares 
that had to correspond to it.  It  was quite widely used internally within IBM, and in fact one 
project,  which needed to change some MFS, started out by converting the old MFS into the 
prototyper specifications, so that they could make their changes, and then generate everything 
automatically.  This  way, they could be sure  that  everything  stayed  consistent.  When such a 
screen definition tool is integrated with a 4GL, you get a very attractive combination. It's even 
better  when  the  prototyping  tool  is  built  using  FBP,  as  it  can  then  be  "grown"  into  a  full 
interactive  application  by  incrementally  expanding  the  network.  This  ability  to  grow  an 
application from a  prototype  seems very desirable,  and is  one  of  the  things  that  make  FBP 
attractive for developing interactive applications. 

The  problem,  of  course,  with  the  conventional  4GL  comes  in  when  the  customer,  like  our 
customer above who wanted to change a report title, wants something that the 4GL does not 
provide. Usually this kind of thing is handled by means of exits. A system which started out 
simple  eventually  becomes  studded  with  exits,  which  require  complex  parametrization,  and 
whose function cannot be understood without understanding the internals of the product - the 
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flow of the product. Since part of the effectiveness of a 4GL comes from its being relatively 
opaque and "black boxy", exits undermine its very reason for being. 

An example of this in the small is IBM's MVS Sort utility (or other Sorts which are compatible 
with it) - as long as one can work with the standard parameters for the Sort as a whole, it's pretty 
clear what it is doing, and how to talk to it. Now you decide you want to do some processing on 
each input record before it goes into the Sort. You now have to start working with the E15 exit. 
This requires that you form a concept of how Sort works on the inside - a very different matter. 
E15 and E35 (the output exit routine) have to be independent, non-reentrant, load modules, so 
this puts significant constraints on the ways in which applications can use load module libraries... 
and so on. Luckily Sort also has a LINKable interface, so DFDM [and AMPS before it] used this, 
turned E15 and E35 inside-out,  and converted the whole thing into a well-behaved reusable 
component. Much easier to use and you get improved performance as well due to the reduction in 
I/O! In a similar sort of way, FBP can also capitalize on the same regularities as 4GLs do by 
providing reusable components (composite or elementary) as well as standard network shapes. 
Instead of programmers having to understand the internal logic of a 4GL, they can be provided 
with a network and specifications of the data requirements of the various components. Instead of 
having to change mental models to understand and use exits, the programmer has a single model 
based on data and its transformations, and is free to rearrange the network, replace components 
by custom ones, or make other desired changes. 

I  should  point  out  also  that  the  regularities  referred  to  above  have  also  provided  a  fertile 
breeding-ground for various source code reuse schemes. My feeling about source code reuse is 
that it suffers from a fundamental flaw: even if building a new program can be made relatively 
fast, once you have built it, it must be added to the ever-growing list of programs you have to 
maintain. It is even worse if, as is often required, the reusable source code components have to be 
modified before your program can work, because then you have lost the trail  connecting the 
original pieces of code to your final program if one of them has to be enhanced, e.g. to fix a bug. 
Even if no modification takes place, the new program has to be added to the list of program 
assets  your  installation  owns.  Already  in  some  shops,  maintenance  is  taking  80%  of  the 
programming resource, so each additional application adds to this burden. In FBP, ideally all that 
is  added to the asset  base is  a network -  the components are all  black boxes, and so a new 
application costs a lot less to maintain. 

A related type of tool are program generators - this is also source-level reuse with a slightly 
different emphasis. As above, an important question is whether you can modify the generated 
code. If you can't, you are limited to the choices built into the generator; if you can, your original 
source material becomes useless from a maintenance point of view, and can only be regarded as a 
high-level (and perhaps even misleading) specification. Like out of date documentation, it might 
almost be safer to throw it away... 

I don't want to leave this general area without talking about CASE (Computer-Aided Software 
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Engineering) tools. The popularity of these tools arises from several very valid concepts. First, 
people  should  not  have  to  enter  the  same information  multiple  times  -  especially  when the 
different forms of this data are clearly related, but you have to be a computer to figure out how! 
We saw this in the case of the prototyping tool mentioned above. If you view the development 
process  as  a  process  of  expressing  creativity  in  progressive  stages  within  the  context  of 
application knowledge, then you want to capture this in a machine, and not just as text, but in a 
form which captures meaning, so that it can be converted to the various formats required by other 
software, on demand. This information can then be converted to other forms, added to, presented 
in a variety of display formats, etc. 

There are a number of such tools out in the marketplace today, addressing different parts of the 
development process, and I see these as the forerunners of the more sophisticated tools which 
will become available in the next few years. Graphical tools are now becoming economical, and I 
believe  that  graphical  techniques  are  the  right  direction,  as  they  take  advantage  of  human 
visualization skills.  I  happen to believe HIPOs (remember them? Hierarchical  Input, Process, 
Output) had part of the right answer, but adequate graphical tools were not available in those 
days,  and maintaining  them with  pencil,  eraser  and a  template  was  a  pain!  However,  when 
someone went through all that trouble, and produced a finished HIPO diagram, the results were 
beautiful and easy to understand. Unfortunately, systems don't stand still and they were very hard 
to maintain, given the technology of those days! 

Our experience is that Structured Analysis is a very natural first stage for FBP development, so 
CASE tools which support Structured Analysis diagrams and which have open architectures are 
natural partners with FBP. In fact, FBP is the only approach which lets you carry a Structured 
Analysis design all the way to execution - with conventional programming, you cannot convert 
the design into an executable program structure. There is a chasm, which nobody has been able to 
bridge in practice, although there are some theoretical approaches, such as the Jackson Inversion, 
which have been partially successful. In FBP, you can just keep adding information to a design 
which uses the Structured Analysis approach until you have a working program. In what follows, 
you will see that FBP diagrams do not really require much information at the network level to 
create  a  running  program which  is  not  already  captured  by  the  Structured  Analysis  design. 
Probably the most important point is that one has to distinguish between code components and 
processes (occurrences of components), and some Structured Analysis tools do not make a clear 
distinction  between  these  two  concepts.  As  we  shall  see  in  the  following  chapter,  an  FBP 
network consists of multiple communicating processes, but a tool which is viewed as primarily 
being for diagramming may be forgiven for assuming that all the blocks in a diagram are unique, 
different programs. The need to execute a picture imposes a discipline on the design process and 
the designer, which means that these confusions have to be resolved. We actually developed 
some PC code to convert a diagram on one of the popular CASE tools into a DFDM network 
specification, which was used successfully for several projects. 
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FBP's  orientation towards reuse also forces one to distinguish between a  particular  use  of a 
component  and its  general  definition.  This  may  seem obvious  in  hindsight,  but,  even  when 
documenting conventional programs, you would be amazed how often programmers give a fine 
generalized description of, say, a date routine, but forget to tell the reader which of its functions 
is being used in a particular situation. Even in a block diagram I find that programmers often 
write in the general description of the routine and omit its specific use (you need both). This is 
probably due to the fact that, in conventional programming, the developer of a routine is usually 
its only user as well, so s/he forgets to "change hats". When the developer and user are different 
people, it is easier for the user to stay in character. 

To summarize, HLLs, 4GLs and CASE are all steps along a route towards the place we want to 
be, and all have lessons to teach us, and capabilities which are definitely part of the answer. What 
is so exciting about FBP is that it allows one to take the best qualities of all the approaches which 
went before, and combine them into a larger whole which is greater than the sum of its parts. 
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In the middle years of this century, it was expected that eventually computers would be able to do 
anything that humans could explain to them. But even then, some people wondered how easy this 
would turn out to be.  A book first  published in the 1950's,  "Faster than Thought" (Bowden 
1963), contains the following remark: 

"It always outrages pure mathematicians when they encounter commercial work for 
the first time to find how difficult it is." (p. 258)

and further on: 

"...it is so hard in practice to get any programme right that several mathematicians 
may be needed to look after a big machine in an office.  ... It  seems, in fact, that 
experienced programmers will always be in demand" (p. 259)

However, in those days, the main barrier was thought to be the difficulty of ascertaining the exact 
rules for running a business. This did turn out to be as hard as people expected, but for rather 
different reasons.  Today we see that the problem is actually built  right into the fundamental 
design  principles  of  our  basic  computing  engine  -  the  so-called  von  Neumann  machine  we 
alluded to in Chapter 1. 

The von Neumann machine is perfectly adapted to the kind of mathematical or algorithmic needs 
for which it was developed: tide tables, ballistics calculations, etc., but business applications are 
rather  different  in  nature.  As  one  example  of  these  differences,  the  basic  building  block  of 
programming  is  the  subroutine,  and has  been since  it  was  first  described by Ada,  Countess 
Lovelace,  Lord  Byron's  daughter,  in  the  last  century  [of  course  that  is  the  19th!]  (quite  an 
achievement,  since  computers  did  not  exist  yet!).  This  concept  was  solidly  founded  on  the 
mathematical idea of a function, and any programmer today knows about a number of standard 
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subroutines, and can usually come up with new ones as needed. Examples might include "square 
root", "binary search", "sine", "display a currency value in human-readable format", etc. What are 
the basic building blocks of business applications? It is easy to list functions such as "merge", 
"sort",  "paginate a report",  and so forth, but none of these seem to lend themselves to being 
encapsulated as subroutines.  They are of a different nature - rather than being functions that 
operate at a single moment in time, they all have the characteristic of operating over a period of 
time, across a number (sometimes a very large number) of input and output items. 

We  now  begin  to  get  some  inkling  of  what  this  difference  might  consist  of.  Business 
programming works with data and concentrates on how this data is transformed, combined and 
separated,  to  produce  the  desired  outputs  and  modify  stored  data  according  to  business 
requirements. Broadly speaking, whereas the conventional approaches to programming (referred 
to as "control flow") start with process and view data as secondary,  business applications are 
usually designed starting with data and viewing process as secondary - processes are just the way 
data is created, manipulated and destroyed. We often call this approach "data flow", and it is a 
key concept of many of our design methodologies. It is when we try to convert this view into 
procedural code that we start to run into problems. 

I  am  now  going  to  approach  this  difference  from  a  different  angle.  Let's  compare  a  pure 
algorithmic problem with a superficially similar business-related one. We will start with a simple 
numeric algorithm: calculating a number raised to the 'n'th power, where 'n' is a positive, integer 
exponent. This should be very familiar to our readers, and in fact is not the best way to do this 
calculation, but it will suffice to make my point. In pseudocode, we can express this as follows: 
/* Calculate a to the power b  */ 
        x = b
        y = 1
        do while x > 0 
            y = y * a
            x = x - 1
        enddo
        return y

Figure 3.1

This is a very simple algorithm - easy to understand, easy to verify, easy to modify, based on 
well-understood mathematical concepts. Let us now look at what is superficially a similar piece 
of logic, but this time involving files of records, rather than integers. It has the same kind of 
structure as the preceding algorithm, but works with streams of records. The problem is to create 
a file OUT which is a subset of another one IN, where the records to be output are those which 
satisfy a given criterion "c". Records which do not satisfy "c" are to be omitted from the output 
file. This is a pretty common requirement and is usually coded using some form of the following 
logic: 
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        read into a from IN
        do while read has not reached end of file
            if c is true
                write from a to OUT
            endif
            read into a from IN
        enddo
 
Figure 3.2

What action is applied to those records which do not satisfy our criterion? Well, they disappear 
rather mysteriously due to the fact that they are not written to OUT before being destroyed by the 
next "read". Most programmers reading this probably won't see anything strange in this code, 
but, if you think about it, doesn't it seem rather odd that it should be possible to drop important 
things like records from an output file by means of what is really a quirk of timing? 

Part of the reason for this is that most of today's computers have a uniform array of pigeon-holes 
for storage, and this storage behaves very differently from the way storage systems behave in real 
life. In real life, paper put into a drawer remains there until deliberately removed. It also takes up 
space,  so  that  the  drawer  will  eventually  fill  up,  preventing  more  paper  from being  added. 
Compare  this  with the  computer  concept  of  storage  -  you  can reach into  a  storage slot  any 
number of times and get the same data each time (without being told that  you have done it 
already), or you can put a piece of data in on top of a previous one, and the earlier one just 
disappears.... Although destructive storage is not integral to the the von Neumann machine, it is 
assumed in many functions of the machine, and this is the kind of storage which is provided on 
most  modern  computers.  Since  the  storage  of  these  machines  is  so  sensitive  to  timing  and 
because the sequencing of every instruction has to be predefined (and humans make mistakes!), it 
is incredibly difficult  to get a program above a certain complexity to work properly.  And of 
course this storage paradigm has been enshrined in most of our higher level languages in the 
concept  of  a  "variable".  In  a  celebrated  article  John  Backus  (1978)  actually  apologized  for 
inventing FORTRAN! That's what I meant earlier about the strange use of the equals sign in 
Higher Level Languages. To a logician the statement J = J + 1 is a contradiction (unless J is 
infinity?) - yet programmers no longer notice anything strange about it! 

Suppose we decide instead that a record should be treated as a real thing, like a memo or a letter, 
which, once created, exists for a definite period of time, and must be explicitly destroyed before 
it can leave the system. We could expand our pseudo-language very easily to include this concept 
by  adding  a  "discard"  statement  (of  course  the  record  has  to  be  identified  somehow).  Our 
program might now read as follows: 
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        read record a from IN
        do while read has not reached end of file
            if c is true
                write a to OUT
            else
                discard a
            endif
            read record a from IN
        enddo

Figure 3.3

Now we can reinterpret "a": rather than thinking of it as an area of storage, let us think of "a" as a 
"handle" which designates a particular "thing" - it is a way of locating a thing, rather than the 
storage area containing the thing. In fact, these data things should not be thought of as being in 
storage: they are "somewhere else" (after all, it does not matter where "read" puts them, so long 
as the information they contain becomes available to the program). These things really have more 
attributes than just their images in storage. The storage image can be thought of as rather like the 
projection of a solid object onto a plane - manipulating the image does not affect the real thing 
behind the image. Now a consequence of this is that, if we reuse a handle, we will lose access to 
the thing it  is  the handle of.  This therefore  means that  we have a  responsibility  to  properly 
dispose of things before we can reuse their handles. 

Notice the difficulty we have finding a good word for "thing": the problem is that this is really a 
concept which is "atomic", in the sense that it cannot be decomposed into yet more fundamental 
objects. It has had a number of names in the various dialects of FBP, and has some affinities with 
the concept of "object" in Object-Oriented Programming, but I feel it is better to give it its own 
unique name. In what follows, we will be using the term "information packet" (or "IP"). IPs may 
vary in length from 0 bytes to 2 billion - the advantage of working with "handles" is that IPs are 
managed the same way, and cost the same to send and receive, independently of their size. 

So far, we have really only added one concept - that of IPs - to the conceptual model we are 
building.  The pseudo-code in Figure 3.3 was a main-line program, running alone. Since this 
main-line can call subroutines, which in turn can call other subroutines, we have essentially the 
same structure as a conventional program, with one main line and subroutines hung off it, and so 
on. Now, instead of just making a single program more complex, as is done in conventional 
programming, let us head off in a rather different direction: visualize an application built up of 
many such main-line programs running concurrently, passing IPs around between them. This is 
very like a factory with many machines all running at the same time, connected by conveyor 
belts. Things being worked on (cars, ingots, radios, bottles) travel over the conveyor belts from 
one machine to another. In fact, there are many analogies we might use: cafeterias, offices with 
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memos flowing between them, people at a cocktail party, and so forth. After I had been working 
with these concepts for several years, I took my children to look at a soft-drink bottling plant. We 
saw machines for filling the bottles, machines for putting caps on them and machines for sticking 
on labels, but it is the connectivity and the flow between these various machines that ensures that 
what  you buy in the store  is  filled with the right  stuff  and hasn't  all  leaked out  before you 
purchase it! 

An FBP application may thus be thought of as a "data factory". The purpose of any application is 
to take data and process it, much as an ingot is transformed into a finished metal part. In the old 
days, we thought that it would be possible to design software factories, but now we see that this 
was the wrong image: we don't want to mass-produce code - we want less code, rather than more. 
In hindsight it is obvious - it is the data which has to be converted into useful information in a 
factory, not the programs. 

Now  think  of  the  differences  between  the  characteristics  of  such  a  factory  and  those  of  a 
conventional, single main-line program. In any factory, many processes are going on at the same 
time,  and  synchronization  is  only  necessary  at  the  level  of  an  individual  work  item.  In 
conventional programming, we have to know exactly when events take place, otherwise things 
are not going to work right. This is largely because of the way the storage of today's computers 
works - if data is not processed in exactly the right sequence, we will get wrong results, and we 
may not even be aware that it has happened! There is no flexibility or adaptability. In our factory 
image, on the other hand, we don't really care if one machine runs before or after another, as long 
as processes are applied to a given work item in the right order. For instance, a bottle must be 
filled before it is capped, but this does not mean that all the bottles must be filled before any of 
them can be capped. It turns out that conventional programs are full of this kind of unnecessary 
synchronization, which reduces productivity, puts unnecessary strains on the programmers and 
generally makes application maintenance somewhere between difficult and impossible. In a real 
factory,  unnecessary  constraints  of  this  sort  would  mean  that  some  machines  would  not  be 
utilized efficiently. In programming, it means that code steps have to be forced into a single 
sequence which is extremely difficult for humans to visualize correctly, because of a mistaken 
belief that the machine requires it. It doesn't! 

An  application  can  alternatively  be  expressed  as  a  network  of  simple  programs,  with  data 
travelling between them, and in fact we find that this takes advantage of developers' visual or 
"spatial" imagination. It is also a good match with the design methodologies generally referred to 
under the umbrella of Structured Analysis. The so-called "Jackson inversion model" (M. Jackson 
1975) designs applications in this form, but then proposes that all the processes except one (the 
main-line)  be "inverted" into subroutines.  This  is  no longer  necessary! Interestingly,  Jackson 
starts off his discussion of program inversion with a description of a simple multiprogramming 
scheme, using a connection with a capacity of one (in our terminology). He then goes on to say, 
"Multi-programming is expensive. Unless we have an unusually favourable environment we will 
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not wish to use the sledgehammer of multi-programming to crack the nut of a small structure 
clash." In FBP we have that  "unusually favourable environment", and I and a number of other 
people believe he wrote off multi-programming much too fast! 

How do we get multiple "machines" to share a real machine? That's something we have known 
how to do for years - we just give them slices of machine time whenever they have something to 
do  -  in  other  words,  let  them "time-share".  In  conventional  programming,  time-sharing  was 
mostly used to utilize the hardware efficiently, but it  turns out that it  can also be applied to 
convert  our  "multiple  main-line"  model  into  a  working  application.  There  are  a  great  many 
possible time-sharing techniques, but in FBP we have found one of the simplest works fine: we 
simply let one of our "machines" (called "processes") run until an FBP service request cannot be 
satisfied. When this happens, the process is suspended and some other ready process gets control. 
Eventually,  the  suspended  process  can  proceed  (because  the  blocking  condition  has  been 
relieved)  and  will  get  control  when  time  becomes  available.  Dijkstra  called  such  processes 
"sequential processes", and explains that the trick is that they do not know that they have been 
suspended. Their logic is unchanged - they are just "stretched" in time. 

Now you may have guessed that the FBP service requests we referred to above have to do with 
communication between processes. Processes are connected by means of FIFO (first-in, first-out) 
queues or connections which can hold up to some maximum number of IPs (called a queue's 
"capacity").  For  a  given  queue,  this  capacity  may  run  from  one  to  quite  large  numbers. 
Connections use slightly different verbs from files,  so we will convert the pseudocode in the 
previous example, replacing: 

• "read" with "receive" 

• "write" with "send" 

• "discard" with "drop" 

• "end of file" with "end of data" 

A "receive" service may get blocked because there is no data currently in the connection, and a 
"send" may be blocked because the connection is full and cannot accept any more data for a 
while. Think of a conveyor belt with room for just so many bottles, televisions, or whatever: it 
can be empty, full or some state in between. All these situations are normally just temporary, of 
course, and will change over time. We have to give connections a maximum capacity, not only so 
that our applications will fit into available storage, but also so that all data will eventually be 
processed (otherwise data could just accumulate in connections and never get processed). 

Now processes cannot name connections directly - they refer to them by naming ports, the points 
where processes and connections meet. More about ports later. 

The previous pseudocode now looks like this: 
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        receive from IN using a
        do while receive has not reached end of data
            if c is true
                send a to OUT
            else
                drop a
            endif
            receive from IN using a
        enddo

Figure 3.4

I deliberately used the word "using" on the "receive" to stress the nature of "a" as a handle, but 
"send  a"  seems  more  natural  than  "send  using  a".  Note  the  differences  between  our  file 
processing program and our FBP component: 

• differences in the verbs (already mentioned) 

• IPs "out there", rather than records in storage 

• IPs must be positively disposed of 

• port names instead of file names. 

We said earlier that IPs are things which have to be explicitly destroyed - in our multi-process 
implementation, we require that all IPs be accounted for: any process which receives an IP has its 
"number of owned IPs" incremented, and must reduce this number back to zero before it exits. It 
can do this in essentially the same ways we dispose of a memo: destroy it, pass it on or file it. Of 
course, you can't dispose of an IP (or even access it) if you don't have its handle (or if its handle 
has been reused to designate another IP). Just like a memo, an IP cannot be reaccessed by a 
process once it has been disposed of (in most FBP implementations we zero out the handle after 
disposing of the IP to prevent exactly that from happening). 

To get  philosophical  for a  moment,  proponents of  "garbage collection"  tend to feel  that  IPs 
should disappear when nobody is looking at them (no handles reference them), but the majority 
of  the  developers  of  FBP  implementations  felt  that  that  was  exactly  what  was  wrong  with 
conventional programming: things could disappear much too easily. So we insisted that a process 
get rid of all of its IPs, explicitly, one way or another, before it gives up control. If you inject an 
IP in at one end of the network, you know it  is going to get processed unless or until  some 
process explicitly destroys it! Conversely, if you build a table IP, and forget to drop it when you 
are finished, many people might argue that it would be nice to have the system dispose of it for 
you. On the other hand... I could argue that such an error (if it is an error) may be a sign of 
something more fundamentally wrong with the design or the code. And anyway, all recent FBP 
implementations detect this error, and list the IPs not disposed of, so it is easy to figure out what 
you did wrong. So..., if we can do that, why not let garbage collection be automatic? Well, our 
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team took a vote, and strict accounting won by a solid majority! It might have lost if the group 
had had a different composition! Eventually, we could make this both an environmental decision 
and an attribute of each component, so we could detect if a "loose" component was being run in a 
"tight" shop. 

Now what are "IN" and "OUT" that our pseudocode receives IPs from and sends them to? They 
are not  the names of  connections,  as  this  would tie  a  component's  code to one place  in the 
network, but are things called "ports". "Portae" means "gates" in Latin, and ports (like seaports) 
can be thought of as specific places in a wall or boundary where things or people go in or out. 
Weinberg (1975) describes a port as 

"...  a  special  place on the boundary through which input  and output  flow...  Only 
within the location of the port can the dangerous processes of input and output take 
place, and by so localizing these processes, special mechanisms may be brought to 
bear on the special problems of input and output."

Now doors have an "inside" aspect and an "outside" aspect - the name of the inside aspect might 
be used by people inside the house to refer to doors, e.g. "let the cat out the side door", while the 
outside aspect is related to what the door opens onto, and will be of interest to city planners or 
visitors. Ports in FBP have the same sort of dual function: they allow an FBP component to refer 
to them without needing to be aware of what they open onto. Port names establish a relationship 
between the receives and sends inside the program and program structure information defined 
outside  the  component.  This  somewhat  resembles  subroutine  parameters,  where  the  inside 
(parameters) and the outside (arguments)  have to correspond, even though they are compiled 
separately.  In the case of parameters, this correspondence is established by means of position 
(sequence number). In fact, in AMPS and DFDM ports were identified by numbers rather than by 
names. While this convention gives improved performance by allowing ports to be located faster, 
our experience is that users generally find names easier to relate to than numbers - just as we say 
"back door" and "front door", rather than "door 1", "door 3", etc. For this reason, THREADS 
uses port names, not numbers. 

Some ports can be defined to be arrays, so that they are referenced by an index as well as a name. 
Thus, instead of sending to a single OUT port, some components can have a variable number of 
OUT ports, and can therefore say "send this IP to the first (or n'th) OUT port". This can be very 
useful  for  components  which,  say,  make multiple  copies  of  a  given set  of  information.  The 
individual slots of an array-type port are called "port elements".  Naturally you can also have 
array-type ports as input ports, which might for instance be used in components which do various 
kinds of merge operation. Finally, a method is provided for the component to find out how many 
elements of an array-type port are connected, and which ones. In DFDM we did not need array-
type ports as ports were numbered, so you could define, say, ports 3 to 20 as acting as a single 
array. 
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Now let's draw a picture of the component we built above. It's called a "filter" and looks like this: 

Figure 3.5

This component type has a characteristic "shape", which we will encounter frequently in what 
follows.  FBP  is  a  graphical  style  of  programming,  and  its  usability  is  much  enhanced  by 
(although it does not require) a good picture-drawing tool. Pictures are an international language 
and  we  have  found  that  FBP  provides  an  excellent  medium  of  communication  between 
application designers and developers and the other people in an organization who need to be 
involved in the development process. 

Now we will draw a different shape of component, called a "selector". Its function is to apply 
some criterion "c" to all incoming IPs (they are received at port IN), and send out the ones that 
match the specified criterion to one output port (ACC), while sending the rejected ones to the 
other output port (REJ). Here is the corresponding picture:

Figure 3.6

You will probably have figured out the logic for this component yourself. In any case, here it is: 
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       receive from IN using a
        do while receive has not reached end of data
            if c is true
                send a to ACC
            else
                send a to REJ
            endif
            receive from IN using a
        enddo

Figure 3.7

Writing components  is  very much like  writing simple main-line programs. Things really  get 
interesting when we decide to put them together. Suppose we want to apply the filter to some 
data and then apply the selector to the output of the filter: all we need to record is that, for this 
application, OUT of FILTER is connected to IN of SELECTOR. You will notice that IN is used 
as a port name by both FILTER and SELECTOR, but this is not a problem, as port names only 
have to be unique within a given component, not across an entire application. 

Let us draw this schematically: 

Figure 3.8

We have just  drawn our first (partial)  FBP structure! FBP software can execute this kind of 
diagram directly  (without  our  having to  convert  it  to  procedural  code),  and in  fact  you  can 
reconfigure  it  in  any  way  you  like  -  add  components,  remove  them,  rearrange  them,  etc., 
endlessly. This is the famous "Legoland programming" which we have all been waiting for! 

Now what is the line marked "C" in the diagram? It is the connection across which IPs will travel 
when passing from FILTER to SELECTOR. It may be thought of as a pipe which can hold up to 
some maximum number of IPs (its "capacity"). So to define this structure we have to record the 
fact that OUT of FILTER is connected to IN of SELECTOR by means of a connection with 
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capacity of "n". 

Now how do we prove to our satisfaction that this connection is processing our data correctly? 
Well, there are two constraints that apply to IPs passing between any two processes. If we use the 
names in the above example, then: 

• every IP must arrive at SELECTOR after it leaves FILTER 

• any pair of IPs leaving FILTER in a given sequence must arrive at SELECTOR in the 
same sequence 

The  first  constraint  is  called  the  "flow"  constraint,  while  the  second  is  called  the  "order-
preserving" constraint. If you think about it using a factory analogy, this is all you need to ensure 
correct processing. Suppose two processes A and B respectively generate and consume two IPs, 
X and  Y.  A will  send  X,  then  send  Y;  B will  receive  X,  then  receive  Y (order-preserving 
constraint). Also, B must receive X after A sends it, and similarly for Y (flow constraint). This 
does not mean that B cannot issue its "receives" earlier - it will just be suspended until the data 
arrives. It also does not matter whether A sends Y out before or after B receives X. The system is 
perfectly free to do whatever results in the best performance. We can show this schematically - 
clearly the second diagonal line can slide forward or back in time without affecting the final 
result. 

Figure 3.9

Connections may have more than one input end, but they may only have one output. IPs from 
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multiple sources will merge on a connection, arriving at the other end in "first come, first served" 
sequence. It can be argued that by allowing this, we lose the predictability of the relationship 
between output and input, but it is easy enough to put a code in the IPs if you ever want to 
separate them again. 

Up to  now,  we have been ignoring where  IPs  come from originally.  We have talked  about 
receiving them, sending them and dropping them, but  presumably they must  have originally 
come into existence at some point in time. This very essential function is called "create" and is 
the responsibility of whichever component first decides that an IP is needed. The "lifetime" of an 
IP is the interval between the time it is created and the time it is destroyed. From one point of 
view it is obvious that something needs to be created before it can be used, but how does this 
apply to a business application? Well,  a lot of the IPs in an application are created from file 
records: generally file records are turned into IPs at file reading time, and the IPs are turned back 
into file records (and then destroyed) at file writing time. There are two standard components to 
do these functions (Read Sequential and Write Sequential), which we will talk more about in 
succeeding chapters. However, it often happens that you decide to create a brand new IP for a 
particular purpose which may never appear on a file - one example of these are the "control IPs" 
which we will  describe in a later  chapter.  Another  example might  be a counting component 
which counts the IPs it receives, using a "counter" IP. This IP is used to maintain the count, and 
is finally sent to the output port when the counter terminates. Such a component will receive the 
IPs being counted, but, before it starts counting, it has to create a counter IP in which the count is 
to be maintained. 

This is the typical logic of a Counter component (by the way, this kind of component normally 
tries to send incoming IPs to an output port, and drops them if this port is not connected): 
        create counter IP using c
        zero out counter field in counter IP
        receive from IN using a
        do while receive has not reached end of data
            increment count in counter IP 
            send a to OUT
            if send wasn't successful,
                drop a
            endif
            receive from IN using a
        enddo
        send c to COUNT port

Figure 3.10

To discover whether OUT is connected, we simply try to send to this port. If the send works, the 
IP is disposed of; if not, we still have it, so we dispose of it by dropping it. What if COUNT is 
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not connected? Since the whole point of this component is to calculate a count, if COUNT is not 
connected there's not much point in even running this component, so it would be even better to 
test this right up front. 

As we said above, all IPs must eventually be disposed of, and this will be done by some function 
which knows that the IP in question is no longer needed. This will often be Writer components, 
but not necessarily. The Selector example above should really be enhanced as follows: 
        receive from IN using a
        do while receive has not reached end of data
            if c is true
                send a to ACC
            else
                send a to REJ
            endif
            if the send wasn't successful,
                drop a
            endif
            receive from IN using a
        enddo

Figure 3.11

At the beginning of this chapter, we talked about data as being primary.  In FBP it is not file 
records  which  are  primary,  but  the  IPs  passing  through  the  application's  processes  and 
connections. Our experience is that this is almost the first thing an FBP designer must think 
about. Once you start by designing your IPs first, you realize that file records are only one of the 
ways a particular process may decide to store IPs. The other thing file records are used for is to 
act as interfaces with other systems, but even here they still have to be converted to IPs before 
another process can handle them. 

Let's think about the IPs passing across any given connection - what is their layout? Clearly it 
must be something that the upstream process can output and the downstream process can handle. 
The  FBP  methodology  requires  the  designer  to  lay  out  the  IPs  first,  and  then  define  the 
transforms which apply to them. If two connected components have different requirements for 
their data, it is simple to insert a "transform" component between them. The general rule is that 
two neighbours must either agree on the format of data they share, or agree on data descriptions 
which encode the data format in some way. Suppose, for instance, that process B can handle two 
formats of IP. If the application designer knows that process A is always going to generate the 
first format, s/he may parametrize B so that it knows what to expect. If A is going to generate an 
unpredictable mix of the two formats, it will have to indicate to B for each IP what format it is in, 
e.g.  by  an  agreed-upon  code  in  a  field,  by  IP  length,  by  a  preceding  IP,  or  whatever.  An 
interesting variant of this is to use free-form data. There may be situations where you don't want 
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to tie the format of IPs down too tightly, e.g. when communicating between subsystems which 
are  both  undergoing  change.  To  separate  the  various  fields  or  sections,  you  could  imbed 
delimiters into the data. You will pay more in CPU time, but this may well be worth it if it will 
reduce your maintenance costs. This is why, for instance, communication formats between PCs 
and  hosts  often  use  free-form  ASCII  separated  by  delimiters  (binary  fields  present  unique 
problems  when  uploading  and  downloading  data).  Lastly,  the  more  complete  FBP 
implementations  provide  mechanisms  for  attaching  standard  descriptions  to  IPs,  called 
Descriptors, allowing them to be used and reused in more and more applications. Descriptors 
allow individual fields in IPs to be retrieved or replaced by name - I will be describing them in 
more detail in a later chapter. 

The next concept I want to describe is the ability to group components into packages which can 
be used as  if  they were components  in  their  own right.  This  kind of  component is  called a 
"composite component". It is built up out of lower-level components, but on the outside it looks 
just like any other component. Components which are not built up of lower-level components are 
called "elementary", and are usually written in some Higher Level Language (DFDM supports 
both PL/I and VS COBOL II), while THREADS supports C. DFDM as distributed also includes 
a  small  set  of  "starter  set"  components  written  in  a  low-level  programming  language  for 
performance reasons, but it is not expected that the majority of users will need to code at this 
level. 

To make a composite component look like other components from the outside, obviously it must 
have  ports  of  its  own.  We will  therefore  take  the previous  diagram,  and show how we can 
package it into a composite called COMPA: 

Figure 3.12

Once we have done this, COMPA can be used by anyone who knows what formats of data may 
be presented at port IN of COMPA and what formats will be sent out of its ACC and REJ ports. 
You will notice that it is quite acceptable for our composite to have the same port names as one 

- 44 -



Chap. III: Basic Concepts

of its internal components. You might also decide to connect the ACC port inside to the REJ port 
outside, and vice versa - what you would then have is a Rejector composite process, rather than 
an  Acceptor.  Of  course  COMPA is  not  a  very  informative  name,  and  in  fact  we  probably 
wouldn't bother to make this function a composite unless we considered it a useful tool which we 
expected to be able to reuse in the future. 

Notice also that we have shown the insides of COMPA - from the outside it looks like a regular 
component with one input port and two output ports, as follows: 

Figure 3.13

Now, clearly, any port on a composite must have corresponding ports "on the inside". However, 
the inverse is not required - not all ports on the inside have to be connected on the outside - if an 
inside  component  tries  to  send  to  an  unconnected  composite  port,  it  will  get  a  return  of 
"unconnected" or "closed", depending on the implementation. 

We have now introduced informally the ideas of "port", "connection", "elementary component", 
"composite component" and "information packet". 

At this point,  we should ask: just  what  are the things we are connecting together? We have 
spoken as though they were components themselves, but actually they are uses or occurrences of 
components. There is no reason why we cannot use the same component many times in the same 
structure. Let us take the above structure and reverse it. We then get the following: 
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Figure 3.14

Let's attach another FILTER to the REJ port of SELECTOR. Now the picture looks like this: 

Figure 3.15

Here we have two occurrences of the FILTER component running concurrently, one "filtering" 
the accepted IPs from SELECTOR, the other filtering the rejected ones. This is no different from 
having two copiers in the same office. If we have only one copier, we don't have to identify it 
further, but if we have more than one, we have to identify which one we mean by describing 
them or labelling them - we could call one "the big copier" and the other "the little copier", or 
"copier A" and "copier B". In DFDM we took the function name and qualified it - in THREADS 
we make what might be called the "in context" function the name, and qualify it to indicate 
which component we are using. These component occurrences are called processes, and it is time 
to explain this concept in more depth. 

- 46 -



Chap. III: Basic Concepts

In conventional programming, we talk about a program "performing some function", but actually 
it is the machine which does the function - the program just encodes the rules the machine is to 
follow. In conventional programming, much of the time we do not have to worry about this, but 
in FBP (as also in operating system design and a number of other specialized areas of computing) 
we have to look a little more closely at this idea. In FBP, the different components are executed 
by the CPU in an interleaved manner, where the CPU gives time to each component in turn. 
Since you can have multiple occurrences of the same component, with each occurrence being 
given its own series of time slots and its own working storage, we need a term for the thing 
which the CPU is allocating time slices to - we call this a "process". The process is what the CPU 
"multithreads" (some systems distinguish between processes and threads, but we will only use 
the term "process" in what follows). Since multiple processes may execute the same code, we 
may find situations where the first  process using the code gets suspended,  the code is again 
entered at  the top by another  process,  which then gets suspended,  and then the first  process 
resumes at the point where it left off. Obviously, the program cannot modify its own code (unless 
it  restores  the code before it  can be used by another process),  otherwise strange things may 
happen!  In  programming  terms,  the  code  has  to  be  read-only.  In  IBM's  MVS,  this  kind  of 
program is called reentrant, which is not quite as stringent as read-only, but read-only implies 
reentrancy, and I have found that making code read-only is a good programming discipline, as it 
makes a clear distinction between variable data, on the one hand, and program code together with 
constants, on the other. Although this may sound arcane, it is not really that far removed from 
everyday life. Imagine two people reading a poster at the same time: neither of them needs to be 
aware of the point in the text the other one has reached. Either one of the readers can go away for 
a while and come back later and resume at the point where he or she left off, without interfering 
in the least with the other reader.  This works because the poster does not change during the 
reading process. If, on the other hand, one person changes the poster while the other is trying to 
read it, they would have to be synchronized in some way, to prevent utter confusion on the part 
of the reader, at least. 

We can now make an important distinction: composite components contain patterns of processes, 
not components. This becomes obvious when you think of a structure like the previous one - the 
definition of that  composite  has three nodes,  but two of them are implemented by the same 
component, so they must be different processes. Of course, they don't become "real" processes 
until  they actually  run,  but  the  nodes  correspond one-to-one with  processes,  so they can be 
referred  to  as  processes  without  causing  confusion.  Here  is  the  same  diagram  shown  as  a 
composite: 
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Figure 3.16

When this composite runs, there will be three processes running in it, executing the code of two 
components. 

Lastly, I would like to introduce the concepts of data streams and brackets. A "stream" is the 
entire series of IPs passing across a particular connection. Normally a stream does not exist all at 
the same time -  the stream is  continually  being generated by one process and consumed by 
another, so only those IPs which can fit into the connection capacity could possibly exist at the 
same time (and perhaps not even that many). Think of a train track with tunnels at various points. 
Now imagine a train long enough that the front is in one tunnel while the end is still  in the 
previous tunnel. All you can see is the part of the train on the track between the tunnels, which is 
a kind of window showing you an ever-changing section of the train. The IP stream as a whole is 
a well-defined entity (rather like the train) with a defined length, but all that exists at any point in 
time is the part traversing the connection. This concept is key to what follows, as it is the only 
technique which allows a very long stream of data to be processed using a reasonable amount of 
resources. 

Just as an FBP application can be thought of as a structure of processes linked by connections, an 
application can also be thought of as a system of streams linked by processes. Up to now, we 
have sat  on a process and watched the data as it  is  consumed or generated. Another,  highly 
productive way of looking at your application is to sit on an IP and watch as it travels from 
process to process through the network, from its birth (creation) to its death (destruction). As it 
arrives at each process, it triggers an activity, much like the electrical signal which causes your 
phone to ring. Electrical signals are often shown in the textbooks like this:
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                                  trailing edge                                  leading edge              

Figure 3.17

The moment when the leading edge reaches something that can respond to it is an event. In the 
same way, every IP has both a data aspect and a control aspect. Not only is an IP a carrier of data, 
but its moment of arrival at a process is a distinct event. Some data streams consist of totally 
independent IPs, but most streams are patterns of IPs (often nested, i.e. smaller patterns within 
larger patterns) over time. As you design your application, you should decide what the various 
data streams are, and then you will find the processes falling out very naturally. The data streams 
which tend to drive all the others are the ones which humans will see, e.g. reports, etc., so you 
design these first. Then you design the processes which generate these, then the processes which 
generate their input, and so on. This approach to design might be called "output backwards".... 

Clearly a stream can vary in size all the way from a single IP to many millions, and in fact it is 
unusual for all the IPs in the stream to be of the same type. It is much more common for the 
stream to consist of repeating patterns, e.g. the stream might contain multiple occurrences of the 
following pattern: a master record followed by 0 or more detail records. You often get patterns 
within patterns, e.g. 
'm' patterns of:
   city record, each one followed by 
   'n' patterns of:
       customer record, each one followed by 
       'p' sales detail records for each customer

Figure 3.18

You will  notice  that  this  is  in fact  a standard hierarchical  structure.  The stream is in  fact  a 
"linearized" hierarchy, so it can map very easily onto (say) an IMS data base. 

To simplify the processing of these stream structures, FBP uses a special kind of IP called a 
"bracket". These enable an upstream process to insert grouping information into the stream so 
that downstream processes do not have to constantly compare key fields to determine where one 
group finishes and the next one starts. As you might expect, brackets are of two types: "open 
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brackets"  and "close brackets".  A group of  IPs  surrounded by a pair  of  brackets  is  called a 
"substream". In THREADS, we use IPs with "type" of "(" and ")" for open and close brackets, 
respectively. 

We have one more decision to make before we can show how we might use brackets in the above 
example. We have two cases where a single IP of one type is followed by a variable number of 
IPs of a different type (or substreams). The question is whether the open bracket should go before 
the single IP or after  it.  In the former case,  we might  see the following (I'll  use brackets to 
represent bracket IPs): 
 < city1 
     < cust11 detl111 detl112...> 
     < cust12 detl111 detl112...>>
  < city2 
     < cust21 detl211 detl122...> 
     < cust22 detl221 detl222...>>
  etc.

Figure 3.19

In the latter case, we would see: 
    city1 <
       cust11 < detl111 detl112...> 
       cust12 < detl111 detl112...>>
    city2 <
       cust21 < detl211 detl122...> 
       cust22 < detl221 detl222...>>
  etc.

Figure 3.20

From the point of view of processing, these two conventions are probably equivalent, but I tend 
to prefer the first one as it includes each customer IP in the same substream as its detail records, 
and similarly includes each city in the same substream as the customers that belong to that city. 
As of the time of writing, there is no strongly preferred convention, but you should make sure 
that  all  specifications  for components  which use substreams state  which convention is  being 
used. By the way, a very useful technique when processing substreams is the use of "control" IPs 
to "represent" a stream or substream. Both AMPS and THREADS and some of the versions of 
DFDM  have  the  concept  of  a  process-related  stack,  which  is  used  to  hold  IPs  in  a  LIFO 
sequence. In Chapter 9, I will be describing how these concepts can be combined. 
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We have now introduced the following concepts: 

• process 

• component (composite and elementary) 

• information packet (IP) 

• structure 

• connection 

• port and port element 

• stream 

• substream 

• bracket 

Normally  at  this  stage  in  a  conventional  programming  manual  we  would  leave  you  to  start 
writing programs on your own. However, this is as unreasonable as expecting an engineer to start 
building bridges based on text-book information about girders and rivets. FBP is an engineering-
style discipline, and there is a body of accumulated experience based on the above concepts, 
which you can and should take advantage of. Of course, you will develop your own innovations, 
which you will want to disseminate into the community of FBP users, but this will be built on top 
of the existing body of knowledge. You may even decide that some of what has gone before is 
wrong, and that is standard in an engineering-type discipline also. Isaac Newton said: "If I have 
seen further than other men, it is because I have stood on the shoulders of giants." Someone else 
said about (conventional, not FBP) programming: "We do not stand on their shoulders; we stand 
on their toes!" Programmers can now stop wearing steel-toed shoes! 

Before we can see how to put these concepts together to do real work, two related ideas remain to 
be discussed: the design of reusable components and parametrization of such components (see 
the next chapter). 
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"Reuse in DFDM is natural. DFDM's technology is unsurpassed in its promotion of 
reuse as compared to other reuse technologies currently being promoted" (from an 
evaluation of DFDM performed by an IBM I/S site in the US in 1988).

So far, we have spoken as though components are created "out of thin air" for a specific problem. 
You may  well  have  suspected  that  I  selected  my components  to  illustrate  certain  concepts, 
without worrying about whether they would be useful in a real application. Well, the good news 
is that the kinds of components we have run into are in fact the ones which experience shows are 
very useful for building real applications. The bad(?) news is that it requires a large amount of 
experience in programming and a certain creative flair to come up with useful components. This 
should not be so surprising when you think about useful tools you are accustomed to using in real 
life.  Where  and  when  was  the  first  hammer  invented?  Imagine  a  whole  series  of  "proto-
hammers", for instance reindeer horns, rocks attached to sticks, etc., gradually evolving into what 
we are used to today, with a claw on one side, and balanced just so.... Perhaps we should qualify 
that by saying "in the West". Different cultures will come up with different tools or different 
forms of the same tool. I seem to remember from my anthropology classes that the Australian 
aboriginals have a wonderful tool which is a combination of all the things they find most useful 
in their everyday life, and yet is highly portable. It is a combination spear-thrower, shield, dish 
and fire-starter. These kinds of tools are not invented overnight - they take time and experience, 
requiring progressive refinement by many creative people. The best tools will always evolve in 
this way. Tools may also pass out of use as the need for them diminishes, or they are replaced by 
something more effective - buggy whips are the classical example, but usually it happens without 
our even noticing! When did they stop putting running-boards on cars? No, you don't need to 
phone right away! Clearly, culture and the tools we use are closely intertwined - we have strong 
ideas about what is the right tool for a given job, but another culture may in fact have a different 
definition of what that job is.... In the West we consider using a knife and fork the "proper" way 
to eat food - a few centuries ago, we were spearing it with the point of a dagger. Knives and forks 
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in turn mean that an acceptable Western meal might include some very large chunks of meat, or 
even half a bird. In the Orient, on the other hand, people have been using chop-sticks for a very 
long time, which requires that the food be served in bite-size pieces. Notice that the choice of 
tools also helps to determine what part of the serving is performed by the diner and what part by 
the cook behind the scenes. 

One other thing we should consider is the need to be able to use the tool in unforeseen situations. 
A useful tool should not be too restrictive in the ways it can be used - people will always think of 
more ways to use a tool than its original designer ever imagined. Wayne Stevens (1991) tells a 
story about an airline attendant using a hearing set (that little plastic stethoscope you plug into the 
arm of your chair) to tie back some curtains. Elegant? No. Effective? Yes! We don't want to 
make a hammer so intelligent that it can only be used on nails.... Another example: why do some 
UNIX™ functions  have  non-obvious  names?  There  are  well-known cases  where  a  tool  was 
originally designed for one job, but people found that it was even more useful for some function 
the original designer did not foresee. This is in fact a testimony to the robustness of these tools. 
We will run into examples of this kind of thing in FBP. 

Just as in the preparation and consumption of food there are the two roles of cook and diner, in 
FBP  application  development  there  are  two  distinct  roles:  the  component  builder  and  the 
component user or application designer. The component builder decides the specification of a 
component, which must also include constraints on the format of incoming data IPs (including 
option IPs) and the format of output IPs. The specification should not describe the internal logic 
of the component, although attributes sometimes "leak" from internal to external (restrictions on 
use are usually of this type). The application designer builds applications using already existing 
components, or, where satisfactory ones do not exist, s/he will specify a new component, and 
then see about getting it built. 

Component  designers  and users  may of  course  be  the  same people,  but  there  are  two very 
different types of skill involved. This is somewhat like the designer of a recent popular game, 
who admitted he was not particularly fast at solving it - his skill was in designing games, not in 
playing them. The separation between makers and users is so widespread in real life that we don't 
pay any attention to it unless it breaks down. In industry, as Wayne Stevens points out, we take 
for granted the idea that airplane builders do not build their own chairs - they subcontract them to 
chair manufacturers,  who in turn subcontract the cloth to textile manufacturers and so on. In 
contrast, the world of conventional programming is as if every builder designed his own nails, 
lumber  and  dry-wall  from  scratch.  Talk  about  "reinventing  the  wheel"  -  in  conventional 
application development we reinvent the rubber, the nuts and bolts, and even the shape of the 
wheel! 

I'd  like to talk a little  bit  about how useful components are developed.  They are unlikely to 
emerge from a pure "top-down" approach, or from a pure "bottom-up" approach. In the first case, 
you do not discover dry-wall by progressively breaking down an architect's drawing of a house. 
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In the second case, people who dream up useful components have to be willing to subject them to 
rigorous testing in real life  situations.  Even after this has been done, they still  may not sell. 
Nobody in industry would bet the business on some untried tool which had never been evaluated 
in the field (well, usually not), and yet we do this frequently in application development. Another 
of Wayne Stevens'  recommendations is  not to  build a generalized tool  until  you  have found 
yourself doing the same thing three or four times. Otherwise, you may find yourself investing a 
lot of time and effort in features that nobody will ever use, and you may find yourself unable to 
respond to customer requests for features they really do want. 

In FBP a lot of the basic components have analogues in an area which is no longer well-known, 
but has been very productive of generalized components over a number of years - namely, Unit 
Record  machines.  In  those  days  we  had  specialized  machines,  such  as  sorters,  tabulators, 
collators,  etc.,  and  people  learned  to  wire  (parametrize)  them  and  link  them  together  into 
applications very effectively. And you didn't need a college degree to get applications working. 
In fact, I once figured how to solve a problem with a tabulating machine plug-board, straight out 
of the bath, over the phone, dripping wet, without even notes or a schematic to look at! 

Just as Unit Record machines worked with streams of punched cards, the corresponding FBP 
components work with streams of IPs. Let's call these "stream-based" components. Examples of 
such components are: 

• sort 

• collate 

• split 

• replicate 

• count 

• concatenate 

• compare 

These all have the characteristic that they process data streams and that they require very little 
information about the format of their incoming data streams. They typically have well-defined 
application-independent functions. 

We might expand the list with some general-purpose components which get down to the data 
field level, but still do not "understand" business processing. One such component might be a 
generalized transform component. I believe such a component, properly parametrized, could in 
fact do a lot of the processing in a given business application. Nan Shu of IBM in Los Angeles 
has written extensively about a language which she calls FORMAL (Shu 1985) - its function is to 
take  descriptions  of  files  and  the  transformations  between  them  and  use  them  to  do  the 
transforming automatically. She has found that a large amount of business processing consists of 
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moving data around, changing its coding, and doing table look-ups, e.g. one application might 
use  a number for each US state,  while another  might use a two-character  abbreviation.  This 
suggests that another type of function in this same class is a generalized table look-up function, 
and in fact we have built several for DFDM. 

There  is  another  general  class  of  components  known  as  "technology-dependent".  These 
components usually require specialized knowledge to build, but, once created, can be used by 
people who are not as technically skilled. They thus encapsulate specialized knowledge. They 
will usually be written in a lower level language. We had an interesting example of this some 
years ago: we had a person who was an expert on paper tape. Paper tape is (was?) a medium with 
its own quirks. It has special codes for various purposes, and in particular has a convention for 
correcting data (you punch all  holes across the offending character,  which is  then treated as 
though there was no character there at all). This individual was able to write some components 
which generated regular IPs, so that no other component in the application needed to know that 
the input was paper tape. You could build and debug an application using regular I/O, and then, 
after you had it working, you could unplug the reader module and replace it with the paper tape 
reader. This meant in turn that testing could be done without the tester having to monopolize a 
scarce (and slow) piece of equipment. 

The two most widely used technology-dependent components are "Read Sequential" and "Write 
Sequential". As you might expect from the names, these convert file records into IPs, and IPs into 
file records, respectively. A matching Read/Write pair of components can be used to encode and 
decode any file format desired. For instance, you might decide that the medium you are using is 
so expensive that you want to compress the data as it is stored, and expand it as you retrieve it. 
Another useful function pair might be encryption/decryption. In fact, any Read/Write component 
pair can be thought of as embodying a data organization. Generalizing this thought, a sequential 
Read/Write component pair provides a conversion between a format suitable for processing and a 
linear format on some medium. For instance, we built a Read/Write pair which was specialized 
for dumping tree structures onto a linear medium and rebuilding them later. 

You  may  have  noticed  by  now  that  components  very  often  come  in  matched  pairs,  e.g. 
split/merge,  read/write,  compress/expand,  encrypt/decrypt,  etc.  This  is  characteristic  of  many 
FBP components - what one component does, another one undoes. In fact the combination of a 
component and its inverse should ideally result in a stream identical to the original input stream, 
just as in mathematics multiplying a number by its reciprocal results in unity, or composing a 
function with its inverse results in the Identity function. 

Using separate Read and Write processes not only gives the separation between logic and I/O 
which is recommended by the majority of application development methodologies, but actually 
reduces elapsed time. The reason for this surprising result is that in FBP an I/O process which has 
to  wait  on  I/O  only  suspends  itself  -  other  processes  can  proceed.  This  means  that  FBP 
applications tend to use as much CPU time as they are allowed to by the operating system. We 
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will be talking more about performance later on. 

Another  interesting  group  of  components  deriving  originally  from  Unit  Record  are  those 
connected with report generation. These include such functions as pagination and generation of 
page headings and footings, as well as totalling and subtotalling, cross-footing and other report 
generation functions.  Reports  are  very often the main  vehicle  of communication  between an 
application and the humans who use it,  and the importance of these facilities to the average 
business is borne out by the remarkable longevity of IBM's RPG, which, while often regarded as 
old-fashioned, is still fulfilling a real need in the market-place. Later in this book, I will describe 
a Report Generation component which was used extensively in our shop. 

A good guideline for the functionality of a component is that its specification should not exceed 
about a page. Some FBP experts have gone so far as to say that the summary of a component's 
function should not exceed one paragraph, and should not have the word "and" in it. Another 
guideline we have found useful is that generalized components should not have more than 4 ports 
(array ports only count as one port). Of course, these guidelines are not mutually exclusive, and 
they  are  only  guidelines  -  some  components  bring  so  much  function  together  that  their 
parameters are essentially mini-languages, but their usefulness may outweigh any awkwardness 
in parametrization. 

The last category of component is that of "business components". These embody business rules, 
and should hopefully be relatively simple, especially if you have used the other categories of 
component as far as possible. We can imagine business components for different business areas - 
banking, oil and gas, and so on. Some will be more mathematical, others less so. In all cases they 
represent the knowledge of some business expert. 

After  functionality,  one  of  the  major  considerations  in  connection  with  designing  business 
components is the likelihood of change. There are some types of business logic which hardly 
ever change, and others which are changed every time they are run. An example of the latter 
might be the logic to generate an employee's taxable income statement at the end of the year. It is 
changed every year and run once a year. It would be very nice if our governments could send out 
a single reusable component every year which companies could then just plug into their own 
payroll programs. This also gets back to the question of roles: who installs the new module? 
Application  development  or  operations  staff?  If  the  former,  you  have  an  ongoing  need  for 
application developers indefinitely; if the latter, can you be sure that the new component will be 
adequately tested? On the other hand, given the backlog of work that application development 
usually faces, something which can just be loaded up and run by operational staff is certainly 
attractive. 

It would help if such a component does as much validation of its input data as possible to make 
sure it is being used in the right context. Ideally a component should never crash - in practice, of 
course, it is almost impossible to prevent one component from destroying another's data, but it is 
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certainly possible to add validation logic to protect against (say) data format errors. The reusable 
module could also require that incoming data be tagged with a particular descriptor. Then if the 
required data format changes, you just need to change the descriptor name. Descriptor names are 
typically part of the specification of a reusable component, so this fits quite nicely. 

The above discussion is really another form of the old compile-time versus run-time debate. In 
FBP,  compile-time  comes  in  two  flavours:  component-level  and  network-level.  Actually 
parameters can be specified inside a composite component and still be outside the elementary 
component which they control! I predict that eventually a lot of business logic will be embodied 
in rules held in rules data bases. Such rules, written in a suitable language, can then be modified 
by  people  outside  the  normal  application  development  group.  These  rules  may  not  even  be 
expressed in what a programmer would recognize as a programming language. A forerunner of 
this is the IBM Patient Care System, in which a surprising amount of the system logic (including 
screen layouts)  was held in the form of tables,  designed to be updated by senior clerical  or 
nursing staff.  This  was very effective,  as these were usually the people who had to use  the 
system, and had the most operational experience with it.  Again we see the separate roles of 
application-developer and application-user. If it bothers you to put so much control in the hands 
of end users,  either implement  authorization systems to make sure only the right people can 
modify  key data,  or  specify  the  rules  as  tables  hard-coded in  the  application  definition,  but 
outside  the  components  that  refer  to  them.  This  way,  control  remains  in  the  application 
development group, but systems become much easier to modify and debug. However, we really 
should be moving away from requiring the DP department to do all systems maintenance. 

If I am right that we will eventually see more and more business logic being either imbedded in 
reusable components or captured as explicit rules on disk, then the role of the current higher level 
languages in the future should diminish. We found in our experience that, given a powerful set of 
reusable components, people would go to enormous lengths to avoid writing HLL code. Much of 
the time, the resulting poorer performance does not matter - the Kendall Report (1977) contrasted 
the running time of the average program with the person-months required to develop it. Programs 
that took 6 person-months to develop might run for a few minutes over their entire lifetimes. So, 
most of the time, minor increases in the amount of CPU time really make no difference. Only in 
the case of long-running jobs run regularly is it worth-while to do performance tuning, and, as we 
shall see in a later chapter, it is much better to instrument an FBP application to find out where 
your real bottle-necks are than to try to guess ahead of time and waste time optimizing code 
which doesn't affect your system's performance much. There are in fact a number of ways to do 
performance tuning in the FBP environments, once we figure out where the real leverage is. 

Far more important than CPU time is human time, and the fundamental question is really what is 
the best way to spend valuable human time. When deciding to develop a new component, you 
must  take  in  account  the  expected  return  on  your  investment  ("ROI"  for  short).  Every  new 
component must be documented, tested, supported, advertised and incorporated into educational 
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material  (well,  ideally  -  sometimes  not  all  of  these  happen!).  Small  wonder,  then,  that  our 
experience with FBP shows that application developers using FBP avoid writing new code - 
being responsible people, they are aware of the burden they take on the moment they start coding 
a new component. However, this realization isn't enough - we have to change the economics of 
the situation. Code is a cost item, as Dijkstra and others have pointed out, and someone who adds 
to the total amount of code when it is not justified is costing your company money, now and into 
the future. I have started suggesting, only half in jest, that programmers should be "penalized" for 
each line of code they write! In fact, some program improvements involve removing code - is 
this negative productivity?!  It has been pointed out many times that people will modify their 
behaviour according to how you measure them - and companies which still measure productivity 
in Kloc (thousands of lines of code) get what they deserve! Conversely, someone who produces a 
useful  reusable  component  improves  the  productivity  of  all  of  its  users,  and deserves  to  be 
rewarded - some companies have already started trying that - the key word, of course, being 
"useful". N.P. Edwards, who I mentioned in an earlier chapter, was a key player in getting IBM 
to move to reusable parts in the hardware area, and he has told me that the key breakthrough 
there also was in changing the economics of hardware development. 

Someone who has talked and written extensively about the importance of reuse is T. Capers 
Jones (e.g.  Jones 1992) -  he has also been aware of my work for some years  and has been 
supportive of it. He has been active in promoting the use of code-independent metrics, such as 
Allan Albrecht's now well-known Function Points, for measuring productivity and has done a lot 
of work on the potential of reuse for reducing the costs of application development. 

How do we know whether a tool is useful? The only way is to measure its use. Will people use 
it? They will if it fits the hand, and if you provide support and education for it.  That in turn 
means you have to have the infrastructure in place to allow your company to take advantage of 
this new technology, and measures and incentives to get people moving in the right direction. 

There is also the opposite question: what if the tool is "less than perfect"? Just as with real tools, 
there is no perfect tool - there are only tools which fit your hand more or less conveniently. Like 
many  programmers  who tend to  be  perfectionists,  you  may  be  tempted  to  postpone  putting 
something on the market because you feel it isn't finished yet. The question should be: is it useful 
as it is? You can always enhance it as time goes on, provided you keep the interfaces stable (or 
provide "expansion ports" but maintain upward compatibility). In fact, after it has been in use for 
a while, you may find that the extensions people really want are not at all what you expected. 
Since your reusable component will hopefully be in widespread use by this time, it is important 
that you allow extension while maintaining upward compatibility. In FBP, the fact that ports are 
named helps you to do this; also parameters (described in the next chapter) should be designed to 
be extensible. Parameters can be in string format, with delimiters, or, if fixed form, it is a good 
idea to insert a few zero bits - these can always to changed to ones to indicate that there is an 
extension portion. 
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Another kind of modification which will happen to your modules occasionally is error correction. 
It is certainly a pleasurable feeling to know that you have improved a component which many 
people are or will be using, and you might think that your users will welcome the change with 
open arms. Unfortunately some of your users may have adjusted to the error, and will need to be 
convinced that you know what is right for them. The other thing users do is take advantage of 
undocumented features. I talked about a tool fitting the hand - it may fit the hand, even with an 
error in it. One team found an error in one of the DFDM components, but instead of telling us 
about it, they carefully compensated for it. When we fixed it, their programs stopped working! I 
think they were quite indignant for a while until everybody realized what had happened. We had 
to spend some time explaining that everyone would be much better off if we fixed the bug rather 
than leaving it the way it was! There is a very important rule which you should impress on your 
users: If it isn't documented, don't trust it. IBM learned the value of this one by bitter experience 
and  has  accepted  its  wisdom  since  the  day  some  bright  user  discovered  an  undocumented 
instruction on one of the 700-series machines. When IBM started making invalid instructions 
result in exception conditions, I'm told quite a few programs in universities and other places 
stopped working! 

The next question is: how will people find out about these components? There is a common 
misconception that reusable componentry doesn't work unless you have an elaborate catalogue, 
which people can interrogate to find the tool they want. On the other hand, Wayne Stevens has 
pointed out that most examples of reuse in everyday life are done very naturally without any 
catalogue. We know by heart  most of the things we use commonly.  Let's say you go into a 
hardware store because you want to attach a wood base onto a ceramic pot - you will be familiar 
with half a dozen types of fastener: glue, nails, screws, rivets, etc. Most of the time you will 
know exactly what kind of glue to use. In this case, let's say you are not quite sure what is best. 
You still don't have to scan the entire store - most of the time, you can go right to the shelf and 
start reading labels. What do you do if you are not sure where in the store to go to? You ask a 
store clerk, who may in turn pass you onto someone who is an expert in a particular area. If your 
requirements are really unusual, the clerk may have to consult a catalogue, but this is likely to be 
a  rare  case.  The  point  is  that  effective  reuse  doesn't  require  catalogues,  although  they  can 
certainly help. 

To try to measure the productivity gains we were getting from DFDM within IBM Canada, we 
kept statistics on the amount of reuse taking place over a number of projects. The figures for 
three projects are shown in the following diagram (the numbers relate to components):
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PROJECT Type Unique Occurrences Reuse Factor 1 / Figure of Merit 
A Project 133 184 1.4 3.7

Gen Purpose 21 305 14.5 
Total 154 489 3.2 
GP/T 0.14 0.62

B Project 46 48 1.0 7.7
Gen Purpose 17 306 18.0 
Total 63 354 5.6 
GP/T 0.27 0.86

C Project 2 54 27.0 135.0
Gen Purpose 8 216 27.0
Total 10 270 27.0 
GP/T 0.80 0.80 

In this chart, "project" means components coded specifically for the project in question, while 
"general  purpose"  means  components  that  are  off-the-shelf  (already  available  and  officially 
supported). "Unique" means separate components (separate pieces of code), while "occurrences" 
means total number of processes (component  occurrences or network nodes).  Thus project  A 
used 154 distinct components, of which 21 came off the shelf, but accounted for 305 of the 489 
processes (about 3/5). GP/T means General Purpose as a fraction of Total, and it is interesting to 
compare the GP/T for unique components against the GP/T for component occurrences. 

The "Figure of Merit", to use Bob Kendall's phrase (Kendall  1988), is calculated as follows: 
number of project-coded components divided by the total number of processes. Since the first 
figure represents the amount of work a programmer has to do (apart from hooking together the 
network), while the second figure represents the amount of work the program is doing, we felt 
that the figure of merit was quite a good measure of the amount of real reuse going on. DFDM 
had been in use about 2 to 3 years in that shop, and we had about 40 off-the-shelf components 
available, so quite a lot of the common tasks could be done without having to code up any new 
components. However, when the programmer did have to code up components, you will notice 

- 60 -



Chap. IV: Reuse of Components

that quite often this code could also be reused, giving reuse factors greater than 1 (Project C had 
a factor of 27.0). In the third example in the above chart, the programmer only had to write 2 
components,  although there were  270 separate  processes  in  his  program. (You can probably 
figure out that this project involved running 27 different files through essentially the same 10 
processes - so it did a lot of work, with very little investment of programmer effort!).

[In Bob Kendall's "Figure of Merit", obviously smaller is better!  In the on-line version, I have 
shown the reciprocal as it seems to be more intuitive to have the larger number indicate better 
reuse.]

Although we thought  at  first  that  this  last  case  was  just  a  quirk,  we  turned up quite  a  few 
applications  which  were  not  that  different  from  this  one  (e.g.  Rej's  letter  quoted  in  the 
Introduction). 

Here are some figures from an evaluation of DFDM quoted from at the beginning of this chapter: 

All of the function in the DFDM pilot application is performed by 30 unique 
coroutines (this is the number of coroutines that an individual would need to be 
familiar with in order to understand the function of the application). 

A total of 95 occurrences of these 30 coroutines make up the application ..... 
providing a 3:1 reuse ratio. 

These 95 coroutines are leveraged through the use of subnets and CNS [Compiled 
Network Specification] networks to perform the equivalent work of 225 unleveraged 
coroutines. 

Some companies  have tried to encourage people to  write  generalized code by offering them 
money or kudos. One counsel I would give them is that you need to monitor not how many 
components someone has written, but how often it is used. An appropriate analogy is the system 
of royalties in the publishing industry. Every time a module is used, the author should get some 
kind  of  token,  be  it  money  or  recognition.  This  will  ensure  that  your  company  will  not 
accumulate a collection of wonderful, Rube Goldbergish gadgets sitting on the proverbial shelf, 
gathering dust. 

Let us say that you are all convinced that reusable code is the way to go - how do we get it 
adopted in your particular shop? You will find (unless all your people are super-altruists) that the 
biggest enemy of reuse is not technology - it is human psychology.  While many people will 
accept the new ideas enthusiastically, others will resist them, and for several different reasons. 
People who have become good at delivering applications under time pressure very often feel that 
they must at all costs maintain control of everything they use, and in fact all their experience has 
taught them that this approach works. Components developed by others will be on their critical 
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path, and they will be pulled between the desire to reduce their own effort by using pretested 
components, and the fear that the components they are relying on will not be ready in time, will 
break or will not be maintained as the environment changes. They have to become convinced that 
someone will  support  these components -  if  necessary,  on a 24-hour basis.  This may not be 
necessary technically, but may be very necessary psychologically! 

Another source of resistance is simply that some programmers love the bits and bytes and don't 
want  to  become mere  combiners  of  precoded components.  There  is  a  role  for  these  people, 
writing the components to specs. As we said above, two different roles seem to be emerging: 
component builders and component users. In my view the latter need skills very similar to those 
required by analysts. They need to be able to talk to users, gather requirements, and even build 
systems or prototypes of systems. For the more complex parts or parts which have to perform 
better,  they  can  subcontract  parts  to  the  component  builders.  This  is  the  domain  where  the 
programmer's programmers ("Merlins", as a friend of mine calls them) can shine. In some senses, 
a component becomes an encapsulation of their particular skill or knowledge. I have found that it 
makes sense to get "tighter" about the external specs and "looser" about how the code is built 
internally. This lets them express their creativity, while still serving the needs of the organization 
as a whole.  Of course,  it  must not be so poorly written that it  doesn't  perform well!  And it 
absolutely must deliver the function according to the specs! Once those are assured, then your 
only concern is maintainability. Generalized code should be maintainable, but you probably don't 
have to control the format of every internal label! 

A programmer once said to me, "I don't like DFDM because I don't get dumps"! At the time I 
took  this  to  mean  that  because  programs  built  using  FBP  tend  not  to  crash,  it  is  hard  for 
programmers to get a feel of how they work. Does not knowing how the engine of your car 
works make you nervous? It probably does affect some people that way, but most of us don't 
care. Later, I realized that it also brings up the very fundamental question of trust - if the users of 
a package don't trust the package or its vendor (same thing, really),  they are not going to be 
happy... And trust is fragile: hard to build up, and easy to damage. 

Let  us  suppose  that  your  company  has  become  convinced  that  developers  should  not  keep 
"reinventing the wheel", but that, like most companies, you have only reached the stage where 
you  are  maintaining  a  library  of  shared  subroutines.  How do  we  get  formalized  sharing  of 
components in place? Suppose I find out that Julia is working on a module which is pretty close 
to what I want but it needs some tweaking to fit my needs. In most shops, we don't even know 
what to call it. Companies that have just started to grapple with naming standards often think it's 
neat for module names to start with the project code. For instance, if I am managing project 
ABC, then I can name all my modules ABC-something. This way, I don't have to worry about 
my module names conflicting with those of other projects. Even the library names will often have 
ABC built into them! So, even to be able to find the code, we usually have to have some kind of 
enterprise-wide naming convention. Next question: who does the modification of the code and 
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who pays  for  it?  What  if  Julia's  schedule  slips  and starts  to  impact  my  schedules?  Even  if 
everything goes really well, who will maintain it, document it, and support it? 

Many writers about reuse agree that the only solution is to set up an independent department to 
write  and maintain  components.  This  department  must  have  enough resources  to  do the job 
properly, which also involves publicising and selling their product. One tendency which must be 
resisted is that such departments often get tied up producing complex, generalized tools for a few 
users, or even for none - they just figure the component would be neat and they'll worry about 
selling them afterwards. Remember the principle of ROI: the company as a whole will get more 
bang for the buck out of a lot of simple tools, especially if they communicate well with each 
other, rather than from a few very complex ones. Since good tools will often start as special-
purpose modules which some other group has found useful, there must be a path for promoting 
such ad hoc components to a place where other people can find them and rely on them. Our 
centralized  software  support  department  must  have  ways  to  beat  the  bushes  for  new  and 
interesting components and must then have ways to evaluate whether potential customers are 
interested (otherwise why go to all that trouble?). It must also avoid getting sucked into writing 
or upgrading complex tools which have only a small market. It is a service organization, so it 
must be service quality oriented, not just a group of self-styled experts who know what is best for 
everyone else. It must become entrepreneurial, but not exclusively bottom-line oriented. In short, 
it must follow good financial and engineering practices. If this takes a major shake-up in the way 
your organization is structured, then you should really get started as soon as possible! 

I  believe  that,  unless  companies  start  to  bring  engineering-type  disciplines  to  application 
development, not only will they fail to take full advantage of the potential of computers, but they 
will become more and more swamped with the burden of maintaining old systems. You can't do a 
lot about old systems - I know, I've seen lots of them - but new systems can be built in such a 
way that they are maintainable. It should also be possible to gradually convert old programs over 
to the FBP technology piece-meal, rather than "big bang". A director I once worked for called 
this "converting an iceberg into ice-cubes"! 

I believe all true disciplines follow a sort of cycle through time, which may be represented using 
the following diagram: 
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Figure 4.1
Innovation can only be founded on a base of solid knowledge of what went before - otherwise we 
are  doomed to  keep rediscovering the same old stale  concepts.  On the  other  hand,  tradition 
without innovation cannot result in progress, and innovation is useless unless the word is gotten 
out to people who can make use of it. As I pointed out above, business application development 
has not really changed significantly since I started in the business in 1959 - but I really believe 
that now, at long last, we can start to see the promise of application development becoming a true 
engineering-style discipline. 
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I would now like to describe the way generalized FBP components are made reusable, using one 
additional, very powerful FBP mechanism, the "Initial Information Packet" or "IIP". IIPs were 
developed by E. Lawton of my old department at IBM in response to some of the problems we 
ran into using DFDM's parameter facility. 

Let's say you have built a component like one of the ones described in the previous chapters. 
Let's call it "Select". It should be clear from the foregoing that this component can be used in a 
variety of contexts,  as long as it  is  sent data in the format it  expects.  Because a component 
communicates with the outside world only through data being sent to or received from its ports, it 
can be held in object form, and never modified. Such reuse is often called "black box" reuse, to 
suggest the idea that the user cannot see the insides of the component. In addition, since the 
"black box" never needs to be modified, once its developer gets it working, it can be relied on to 
work correctly in any context. This is the converse of "white box" or "clear box" (source level) 
reuse, which is  what most so-called reuse tools provide today.  This type of reuse is easy to 
provide, but in my view doesn't buy its users much. It may reduce the cost of developing new 
code, but the amount of net new code which has to be maintained still increases. Furthermore, if 
a bug is found in the reused code, there is no easy way to tell whether it is safe to fix all instances 
of it - if you can even find them (with some reuse tools you can't even do that). 

We will of course have to tell our black box Select component which fields to select on, as, 
otherwise, it will only be able to select on whichever fields were hard-wired into it. Suppose we 
want to tell it that it is to do its selecting on the contents of a 6-byte field starting at offset 23 in 
each  incoming  IP,  and  also  want  to  give  it  a  list  of  acceptable  field  values.  In  classical 
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programming, we do this kind of thing by having the calling program specify parameters. In FBP 
we do something similar, but there is no user-written calling program in which to specify the 
parameters. Instead there is a way for the application designer to specify this information, right in 
the application structure definition. This mechanism is called an Initial Information Packet (IIP). 
We also need an additional port on the component (let's call it OPTIONS - it can have any name 
we want). An IIP can be generated as part of the structure and associated with the chosen port. 

Once the process is started, an IIP is turned into an ordinary IP by the component issuing a 
"receive" service call against the port the IIP is connected to. This has the added advantage that 
the OPTIONS port  can also be fed by an upstream process instead of an IIP,  so component 
options can either be decided at structure-building time or deferred until execution time, without 
any modification of the component being required. What the component sees when it does its 
receive from the OPTIONS port is an ordinary IP. In what follows, we will sometimes refer to 
this as an "options IP" - options IPs may start out life as IIPs or may be generated by upstream 
processes, but their function is primarily to control execution, rather than to carry data (obviously 
this is not a hard and fast distinction, and you may find a need for IPs which combine both 
functions). 

One last point about options IPs: a major decision for the component designer is whether to make 
them free-form or give them a fixed layout - the former will generally be easier to specify, but is 
going to cost more processing time to scan for delimiters, convert numeric values, etc. However, 
since  this  processing  is  usually  done  just  once,  at  the  beginning  of  the  run,  it  may  not  be 
significant in the context of total processing time. THREADS opted for free-form IIPs for its "off 
the shelf" components because of the ease of use factor. One other thing you should consider if 
you choose to use free-form IIPs is that you will need to decide on delimiter conventions, e.g. 
you might opt for commas or blanks, and you might decide to use brackets to group together sets 
of option values. This in turn means some convention will be needed for specifying character 
strings which might contain delimiter characters as valid values (the old "quotes within quoted 
strings" problem). 

Fixed-form options, on the other hand, will take less machine processing time and avoid the 
above-mentioned problems of delimiter conventions. Conversely, they are more likely to result in 
alignment errors, and are harder to make open-ended. There are other options, however, within 
the fixed-form category: 

- use some front-end tool to generate the fixed-form IIP, or 

- use a descriptor (see Chapter 11 on Descriptors) to access the fields in the options IP. 

Let's say we want to write a generalized selector where the column number, field length and 
permissible values are received from an OPTIONS port at execution time. Using a long, shallow 
rectangle to represent an IIP (by the way, you can't attach IIPs and regular processes to the same 
connection), we might represent our selector with its options IIP as shown below. The field being 
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selected on starts at offset 23, for a length of 1 byte. IPs with a value of A at that position will be 
sent to the zero'th element of port OUT, IPs containing a B go to the number 1 element, and so 
on. 

Figure 5.1

In a structure diagram, it is often useful to be able to show parameter values right in the picture. 
Note that in this example we have shown a free-form IIP. 

To  convert  this  diagram  to  use  a  connection  instead  of  an  IIP,  change  the  block  feeding 
OPTIONS to a component, and attach  it to the OPTIONS port, as follows: 
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Figure 5.2

By way of comparison, in DFDM processes were parametrized by means of a variable-length 
character string (2 byte binary length followed by a character string) passed to the component at 
activation time (analogously to the way a parameter string is passed to a job step in IBM's MVS). 
This meant that parameters specified in the network and parameters coming from an upstream 
process could not be handled in a uniform manner. 

There is a general problem of passing parameters from the "outside world" into networks. In 
DFDM's approach to parametrization,  external  parameters  were only passed to the outermost 
structure,  and  there  was  a  system  of  "inheritance"  which  allowed  lower  level  structures  or 
component  access  to  parameters  at  the  next  higher  level.  Although  we  haven't  tackled  this 
problem in THREADS yet,  the IIP technique should make this whole area much simpler as 
special components can be written to obtain external parameters and pass them into the network 
like any other IPs. 

At  a  more  general  level,  parametrization  of  components  may  be  thought  of  as  a  spectrum, 
running from low to high. Low parametrization (few or no parameters) occurs when a component 
has no variability - either because it is custom-coded for a particular application, or because it is 
so simple that it always does the same work in the same way. For instance, there is a very useful 
component in all existing FBP systems which simply accepts and outputs all the IPs from its first 
input port element, followed by all the IPs from its second input port element, and so on until all 
the input port elements have been exhausted. In DFDM it was called the "Sequencizer" (some of 
my friends like to play fast and loose with the English language). This component is often used to 
force a sequence on data which is being generated randomly from a variety of sources. One 
example might be control totals being generated by different processes which you then want to 
print out in a fixed order on a report. You know the sequence you want them displayed in, but 
you do not know the time at which they are going to be created. Schematically: 
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Figure 5.3

Its function is so simple that it doesn't need an options port. Now you may be asking, "Why not 
simply take all the incoming data streams and merge them into a single input port?". The answer 
is that you can do this, but the effect is somewhat different. What happens in that case is that the 
incoming IPs are merged in a "first come, first served" sequence, which is not what you wanted. 
However, there is a down side to this function: because the data from input port element 1 is held 
up until Concatenate knows that port element 0 has been closed, and so on for the remaining 
ports, there is the potential for deadlock. Deadlocks are not as bad as they sound, and there are 
well-established ways of detecting places where they might occur, and of preventing them before 
they can occur. In FBP, deadlocks are viewed as a design-time problem. We will be talking about 
the cause and prevention of Deadlocks in a later chapter (Chapter 16). 

The Select component has a median level of parametrization, and most of the components we 
will be talking about in this book are similar, but there are occasional components which have so 
many  parameters  that  they  can  almost  be  thought  of  as  mini-languages.  If  parameters  are 
replaced by, say, rules held on a data set, or even a large IIP, then you really do have a mini-
language. A later chapter (Chapter 17) goes into more detail about this whole area. We will also 
be describing in Chapter 18 an approach to a generalized component of this type which should be 
able to handle a considerable part of the logic of a business application. 
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"One of the things I like about AMPS is that there are so many more ways to do a job 
than with conventional programming" (a programmer at a large Canadian company).

We will start this chapter with the simplest network imaginable - well, actually, a network with 
one process only is the simplest, but this is equivalent to a conventional program! The simplest 
network with at least one connection might be a Reader feeding a Writer, as follows: 

Figure 6.1

This network just copies one file to another, so it is equivalent to the kind of "copy" utility which 
is provided by just about every operating system. The difference is that FBP lets you combine 
these  utilities  into  more  and  more  complex  functions.  Utilities  in  my  experience  provide  a 
number of functions, but one always wants something a little different. The functions that they 
have coded into them are often not the ones one needs. This is quite understandable given the 
difficulty of predicting what people are going to find useful. One alternative is to combine a 
bunch of utilities by writing intermediate files out to disk. FBP effectively allows you to combine 
multiple utility functions without requiring any disk space, or the I/O to read and write from and 
to disk (so you also use less CPU time, and more importantly, less elapsed time). 

Suppose you wanted to combine a "copier" function with a selector, then sort the result before 
writing it to disk. Just string the functions you want together: 
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Figure 6.2

Actually, the network doesn't  even have to be fully connected. For instance, the following is 
perfectly valid, and may even be useful! 

Figure 6.3

I can remember a time when being able to write a program which would simultaneously read 
cards and write them to tape, read a tape and punch out the records, and do some printing was 
considered the height of a programmer's ingenuity! With FBP, I discovered all you have to do is 
specify the connections between six processes as shown in the diagram! 

Now, if you think about this diagram as a way to get something done, not to control when it 
happens,  you  will  realize  that  the three  pairs  of  processes  shown above do not  have to run 
concurrently. The point is that they can if there are adequate resources available, but they don't 
have to - it doesn't affect their correct functioning. Think of this network as three train-tracks, 
with a train running on each one. You just care that each train gets to its destination, not when 
exactly, nor how fast. In business applications it is correct functioning we care about - not usually 
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the exact timing of events. In the MVS implementations of FBP, the three "tracks" probably will 
run concurrently because I/O can be overlapped. In THREADS [a PC implementation], which 
has no I/O overlap yet, they may run sequentially. In none of these cases is the order defined. I 
think  the  bottom  one  will  run  first,  but  I'm  not  sure!  Naturally,  this  makes  old-guard 
programmers very nervous, accustomed as they are to controlling every last detail of when things 
have  to  happen.  I  will  keep  coming  back  to  this  point  since  it  is  so  important:  application 
development should be concerned with function, not timing control - unless, of course, timing is 
part  of the function, as in some real-time applications.  We have to decide what is worth the 
programmer's attention, and what can safely be left to the machine. Not knowing exactly when 
things are going to happen turns out to be liberating, rather than disorienting (for most people). 
But, yes, some programmers will find the transition rather hard! 

By the way, when comparing 4GLs and FBP, I have been struck by the fact that you really can 
do anything in FBP! FBP's power does not come from restricting what programmers can do, but 
from encapsulating  common  tasks  in  reusable  components  or  designs.  Since  a  conventional 
program is in fact an FBP network consisting of a single process, the programmer is free to 
ignore all FBP facilities, if s/he wishes, and the result is a conventional program. This may sound 
glib,  but  it  says to me that  we are not  taking anything away -  we are adding a whole new 
dimension to the programming process. While some programmers do feel a sense of restriction 
with  FBP,  it  comes  from having  to  express  everything  as  "black  boxes",  with  well-defined 
interfaces between them, not from any loss of function. 

In the rest of the chapter, we will put together some simple examples using reusable components, 
but first we should make a catalogue of some of the types of components which an FBP shop will 
probably have in its collection, a number of which we have already run into. The types which 
haven't been mentioned above are fairly obvious extensions of what went before. Some of the 
items in this list should be understood as representing types of component, rather than specific 
pieces  of  code.  For  example,  a  shop  might  have  two or  three  Sort  modules,  with  different 
characteristics. 

• sort 

• collate 

• split 

• assign 

• replicate 

• count 

• concatenate 

• compare 
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• generate reports 

• read 

• write 

• transform 

• manipulate text (this might be a large group) 

• discard 

Let's  also  throw  in  some  components  which  have  proven  useful  during  development  and 
debugging: a "dumper" (which displays  hex and character formats)  and a line-by-line printer 
component. 

We haven't mentioned "Assign" before. I am going to use this for some examples, so we will go 
into a little more detail on this type of component. This component (or component type) simply 
plugs a value into a specified position in each incoming IP, and outputs the modified IPs. It has 
the same shape as a "filter", and can be drawn as follows: 
  

Figure 6.4

where OPT receives the specification of where in the incoming IPs the modification is to take 
place, and what value is to be put there. For instance, we might design an Assign component 
which takes option IPs looking like this: 
3,5,ABCDE

This might specify that 'ABCDE' is to be inserted in the 5 characters beginning at offset 3 from 
the start  of each IP.  This may seem to be overly simple, but it  can be combined with other 
functions to provide a broad range of function. 

By the way, this component illustrates the usefulness of IIPs: if Figure 6.5 is specified in an IIP, 
you have essentially defined a constant assign with the value defined outside the Assign process, 
but  fixed  in  the  network  as  a  whole.  Now,  instead,  connect  the  OPT port  of  Assign  to  an 
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upstream process, and you now have a variable assign, where the values can be anything you 
want, and can be changed whenever you want. 

Now let's use Assign to mark IPs coming from different sources.  Let's suppose you want to 
merge three files and do the same processing on all of them, but you also want to be able to 
separate them again later. You could use Assign to set a "source code" in the IPs from each file, 
and use a splitter to separate them later. 

In an earlier chapter we have used the idea of a two-way selector, looking like this: 

                      
Figure 6.5

Now we can generalize this to an n-way splitter, where, instead of two ports with specific names, 
we have an array port, which essentially uses a number to designate the actual output connection. 
Let us show this as follows (using the THREADS numbering convention): 

Figure 6.6
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Combining the Assign components and a splitter,  we could implement the above example of 
merging three files as follows: 

Figure 6.7

Splitters have to be parametrized by specifying a field length and offset, and a series of possible 
values. The above splitter might therefore be parametrized as follows: 
54,1,'A','B','C'

assuming  the  codes  A,  B  and  C were  inserted  into  the  IPs  coming  from the  three  readers, 
respectively. 

Let us construct a more complex example based on the provinces of Canada. Let's say we have a 
file of records with province codes in them. We want to arrange them by time zone, so that we 
can print them out and have a courier deliver them in time for start of business. The easternmost 
point in Canada is 4 1/2 hours ahead of the westernmost point, so most big Canadian companies 
have to wrestle with time zone problems. 

Here we will  also use  a splitter  to  split  the stream of IPs by province.  Once the "province" 
streams have been split out, we could use Assign to insert appropriate codes into the different IP. 
This splitter might have an option IP looking like this: 
6,2,'ON','QU','MA','AL',...

This will be read as follows: check the 2 characters starting at offset 6 from the incoming IP; if it 
is ON, route the IP to OUT[0]; if QU, to OUT[1]; if MA, to OUT[2]; etc. Of course, in both of 
the above cases, it would be much more friendly to be able to use field names, rather than offsets 

- 75 -



Chap. VI: First Applications using Precoded Components

and lengths. We will talk about this idea in the chapter on Descriptors. 

One other question we have to answer is: what does the Selector do if the incoming IP does not 
match any of the specified patterns? In DFDM, the standard splitter simply sent unmatched IPs to 
array element 'n+1', where 'n' equals the number of possible values given (DFDM used 1-based 
indexing). Another possibility might be to send unmatched IPs to a separate named port. 

The application might therefore look like this (I'll just show two Assign processes, and assume all 
IPs find a match): 

Figure 6.8

The Assigns can insert a code which ascends as one goes from east to west. Because Sort is 
going to rearrange all the data, we can feed all the modified records into one port on the sort 
process. This also avoids the possibility of deadlock (I'll be talking more about why this should 
be so in a later chapter). 

I didn't show the option ports on the Assigns, but they will be necessary to specify what codes 
should be inserted, and where. 

Now let's add the logic to handle unmatched IPs. Since they should probably be reported to a 
human, we will add a printer component, and used the named port technique, as follows: 
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Figure 6.9

At this point we will simply have a list of unmatched IPs streaming out onto a print file. You will 
probably want to put out an explanatory title, and do some formatting. You will see later how to 
do this. For now, let's just say that you will probably need to change this network by inserting 
one or more processes where I have shown PRINTER above, e.g.: 
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Figure 6.10

Let us suppose we now have our network working and doing what it is supposed to do - we have 
to ask the question: is this network "industrial strength"? There is a definite temptation, once 
something is working, to feel the job is finished. In fact, it is quite acceptable to use a program 
like the one shown above for a once-off utility type of application, or for a temporary bridge 
between two applications. But there is a fundamental question which the designer must answer, 
and  that  is  (in  this  application),  how long  are  there  going  to  be  exactly  13  provinces  and 
territories in Canada? No, you did not suddenly jump into a book on Canadian politics! We have 
made our program structure reflect a part of the structure of the outside world, and we have to 
decide how comfortable we feel with this dependency. Yes, there will always be programmers, 
and  we  can  always  change  this  program...  provided  we  can  find  it!  Nobody can  make  the 
decision for you, but I would suggest that if this program may have to survive more than a few 
years, you might want to consider structuring your code to use a separately compiled table or 
data base, which can pull together all the attributes of provinces of interest to your application. 
Your application might then look like this (if you generalize SELECT to mean "determine which 
province it is", and ASSIGN to mean "insert the time zone code for each province"): 
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Figure 6.11

Note that this diagram has become simpler and the components more complex. It has the same 
general structure as the preceding diagram, but the shape does not reflect a (possibly changeable) 
political  structure.  Another  approach  might  be  to  amalgamate  the  SELECT  and  ASSIGN 
components  shown  above,  using  either  special  purpose  code  or  a  generalized  transformer 
module. 

A  more  subtle  generalization  might  be  to  keep  the  parallelism,  but  not  tie  it  to  individual 
provinces at network specification time. Let us decide there will never be more than, say, 24 
provinces, so we will extend the earlier diagram to have 24 ASSIGN processes. SELECT will 
have 24 port elements on its output port, connected to the ASSIGNs. Now, since both ASSIGN 
and SELECT are option-driven, we can obtain their  parameters  from a file (being read by a 
Reader) or a table (using a Table Look-up component) and send them to their OPT ports. The 
possibilities are endless! The important decisions are not "how do I get this working?", but "what 
solution will give me the best balance between performance and maintainability?". When I was 
teaching FBP concepts, I used to tell my students that the machine will accept almost anything 
you throw at it - the real challenge in programming is to make your program comprehensible by 
humans (whether they are other people looking at your code years later, or your own self one 
week later)! This is far more of a challenge than simply getting the code working. 

There is yet another way to look at this example: what we are really doing (in the last diagram) is 
converting one code to another under control of a table. One of the generalized component types 
that we found most useful was one (or several) table look-up components. The table could be 
held  as  a  load  module  (in  MVS),  in  which  case  it  would  have  to  be  maintained  by  the 
programming  department,  but  a  better  technique  is  to  hold  it  on  a  file.  The  table  look-up 
component will then look like this: 
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Figure 6.12

What will happen here is that at start-up time the component will read all the IPs from the port 
named TABLE and build a table in storage. It then starts a process of receiving IPs from IN, 
looking up a specified field in the table, inserting the found value into the IPs, and then sending 
them to OUT. Of course, this needs to be parametrized - probably we will need to specify the 
offset and length of the search field in the incoming IPs, and the offset and length of the field 
which is to be inserted. We will  need a Reader to bring in the table IPs from a file,  so the 
resultant network will look like this (partially): 
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Figure 6.13

Table look-up components have been found to be very useful in the various dialects of FBP. In 
DFDM, the system was distributed with two "off the shelf" table look-up components. One of 
them was much like the one we've just described. However, the other one gives you some idea of 
what can be provided in the form of reusable code, with a little more imagination! It's pretty 
complex, but it is a "black box" piece of reusable code, and I am showing it just to indicate what 
can be done with a single component. Of course it violates some of the rules we gave above, so 
maybe this should sound some warning bells! However, I believe you will agree that it is still a 
"stream" process, rather than just a complex algorithm. Basically,  it does table look-ups on a 
table which is being refreshed from some kind of backing store - it doesn't care what kind, so 
long as the other process conforms to a certain protocol. It therefore acts as both a table look-up 
component and as a buffering device. 

Here is the picture: 

Figure 6.14

This look-up component always works with another process (in this case called  GET TABLE) 
which is used to access a direct access file or data base. These two components work together as 
follows: 

• the top component builds the table, which starts out empty 

• as each search request comes in, it is checked against the table; if a match is found, the 
search request goes out of OUT and the table entry out of MATCH 
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• if a match is not found, the search request is sent to the other process, which will either 
find it or not; if it finds it, the search request and the found table entry are sent back to the 
top component, to be respectively sent to OUT and added to the table 

• if it does not find it, a zero-length IP is sent to the top component, together with the search 
request; the zero-length IP tells it not to add an entry to the table, and the search request is 
sent to UNMATCH 

This may seem complicated, but once set up, it is very easy to use, and any process can occupy 
the "bottom" position, provided that it behaves as described. This DFDM component (the "top" 
component) only needed 4 parameters,  of which one was the (optional) maximum number of 
entries in the table. If this limit was specified, and was reached, entries would start to be dropped 
off  the  table  in  FIFO sequence.  Another  possibility  could  have been to use  an  LRU (Least 
Recently Used) sequence. 

This chapter has tried to give some idea of what can be done using only reusable components. Of 
course, the number of these is going to grow steadily, and, especially if you have made some of 
the organizational changes we suggested in an earlier chapter, you may wind up with a sizable 
number of useful, reusable tools. We don't know what this number is, but my guess is that it will 
taper off in the low hundreds. The amount these are used will follow a curve with the following 
general shape: 

Figure 6.15
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where the less frequently used components may be used only in a few applications. Given this 
kind  of  distribution,  you  may  wonder  whether  it  is  worth  maintaining  the  low-frequency 
components in a support department, or whether they should be made the property of the using 
departments. The answer will depend on whether specialized knowledge is encapsulated in them, 
whether you are trying to sell them outside the company, and so on. 

This  kind  of  rarely  used  component  has  similarities  with  what  we  have  called  "custom" 
components.  Until  all  code is "off the shelf" (if that ever happens),  there will  be a need for 
customers  to  write  their  own  components.  This  is  not  as  easy  as  just  hooking  reusable 
components together, but it is also pretty straightforward. In the next chapter, I will talk about the 
idea of composite components, and then in the following chapter start to discuss some concepts 
for building systems by combining "off the shelf" and "custom" components. 
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In Chapter 3 (Concepts), we talked about hierarchic structures of substreams - there is obviously 
another type of hierarchic structure in FBP, which has been alluded to earlier: the hierarchical 
relationship between components.  Although the processes in an FBP application are all  little 
main lines, cooperating at the same level to perform a job of work, it is easier to build the total 
structure hierarchically, with a "top" structure comprising two or more processes, most of which 
will  be  implemented  using  composite  components.  Each  composite  component  in  turn 
"explodes" into two or more processes, and so on, until you reach a level where you can take 
advantage  of  existing  components,  or  you  decide  that  you  are  going  to  write  your  own 
elementary components, rather than continuing the explosion process. Apart from the emphasis 
on using preexisting components, this is essentially the stepwise decomposition methodology of 
Structured Analysis. 

The application of this approach to FBP is largely due to the late Wayne Stevens, arising from his 
work on Structured Programming and application development methodologies in general. From a 
hierarchy point of view, a running program built using AMPS (the first FBP dialect) was "flat" - 
it had no hierarchic structure at all. People drew application networks on big sheets of drawing 
paper,  and  stuck  them  up  on  their  cubicle  walls.  These  drawings  would  then  gradually 
accumulate an overlay of comments and remarks as the developers added descriptions of data 
streams, parametrization, DDnames, etc. When the time came to implement the networks, the 
developer simply converted the drawing into a list of macro calls. 

Wayne  realized  that  a  better  way  to  develop  these  networks  was  to  use  the  decomposition 
techniques  of  Structured Analysis,  but  that,  unlike  conventional  programming,  there  was no 
change in  viewpoint  as  you moved from design to implementation.  In  conventional  program 
development there is a "gap" between the data flow approach used during design and the control 
flow viewpoint required during programming,  which is extraordinarily difficult  to get across. 
When building DFDM we therefore provided a way for developers to grow their systems by 
stepwise  decomposition,  but  at  structure  build  time  the  hierarchy  got  "flattened"  into  the 
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conventional AMPS-type network. This approach turned out to be very successful - I alluded 
earlier to a colleague who built a 200-node network without once drawing a picture of a network! 

So DFDM networks can be built up hierarchically, but are flat at run-time. This approach lets 
developers build up their applications layer by layer. As we have shown in some of the examples, 
you could also take a simple component and replace it by a subnet - this gives an additional 
dimension of  expandability.  In  DFDM we have seen that  subnets  can be stored on reusable 
libraries  and  reused.  However,  they  must  be  stored  in  interpretable  form,  so  their  internal 
structure is  visible (although they are built  out of black boxes).  It  would be even better  for 
someone marketing an application to be able to store some or all of an application as "black box" 
subnets, so that the customer cannot see inside the subnets. Remember that DFDM has the ability 
to take an interpretable network and convert it into a directly executable load module. It should 
be possible to do this with a subnet as well, so that a part of an application is held as a black box 
as well. The original motivation for doing this, however, was performance of interactive systems. 

Consider an application comprising 200 processes - when you link all the code together into a 
single module, the result is a pretty big load module. The particular application mentioned above 
ran under IMS/DC, and the network was executed once for each transaction. However, when we 
started measuring performance, we found that, on each pass through the network, even though 
IMS loads in the whole network for most transactions, only about 1/3 of the processes actually 
got executed for a given transaction. We wondered if we could just build a framework for an 
interactive application and load in the required chunks of logic dynamically. This would have the 
advantage that it would take less time to load in the application on each transaction, because the 
individual  load  modules  would  be  smaller,  thus  improving  response  time.  Also,  on  each 
transaction you would only need the framework and the particular dynamic chunk involved, so 
the framework could actually be made resident, improving response time even more. It should 
also make it easier to expand the application and even change it on the fly. The problem was: 
how do you run a network which modifies itself dynamically without losing track of your data? 

For a long time, I resisted this idea as I had a vision of a complex subway system like the London 
underground, but with the added complexity that stations would be appearing and disappearing at 
random. How would it feel to be a passenger in such a system?!  I had experimented with loading 
in individual components dynamically under AMPS: I was able to read in or load a piece of code, 
treating it as pure data, and let it travel through a network, until it arrived at a "blank" process 
(one which was connected to other processes but had no code assigned to it - a sort of "tabula 
rasa" process), at which point it would get executed, so I felt that dynamic process modification 
could work under controlled circumstances. Wayne Stevens had also proposed a particular case 
of dynamic network modification which is simpler than what we eventually landed up with, but 
we never got around to trying it out: his image was of engineers repairing a dam. The water has 
to keep flowing, so the engineers divert the water through a secondary channel. After the dam has 
been repaired, the water flow can be restored to its original channel. This seems like it would be a 
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good way to do maintenance on an FBP system which has to keep running 24 hours a day, like a 
banking system. 

I myself came up with a different and somewhat more complicated approach, which however 
was  also  safe  and  manageable,  and  which  also  solved  the  problem  of  load  module  size  I 
described  above.  The  trick  I  discovered  was  to  have  a  "mother"  process  load  a  subnet  (in 
compiled and linkedited form), start up the processes in the subnet, and then go to sleep until all 
of her "daughter" processes had terminated. At subnet start time, the daughters are counted, so 
the subnet is finished when the count of active daughters has gone down to zero. While the 
mother is sleeping, some of the daughter processes can be given control of their mother's input 
and output ports. There will be no conflict over who has control of the ports, as the mother and 
the daughters are never awake at the same time. 

We called these subnets in DFDM dynamic subnets. The "mother" was a generalized component 
called the Subnet Manager, which continuously iterated through the following logic: 

• receive the name of a subnet in an IP, 

• load the subnet load module, 

• "stitch" it into the main network, 

• start it up and go to sleep, 

• wake up when all the daughter processes have terminated, 

• dispose of the subnet load module and repeat these steps 

In  addition  to  the  Subnet  Manager,  we  added  special  precoded  components  (Subnet  In  and 
Subnet Out) which were used for input and output handling by the subnet. Here is a picture of a 
very simple dynamic subnet (with one input data port and one output port): 
 
Figure 7.1

When 'X' is given control, it behaves just like a mini-application: technically SUBIN has no input 
ports, so it gets initiated. The other two processes have input ports, so they will not be initiated 
until data arrives. SUBIN and SUBOUT have the ability to use their mother's input and output 
ports  respectively.  They  have  to  be  separate  processes  as  they  have  to  be  independently 
suspendable.  Thus,  if  mother  had  two input  data  ports,  the  subnet  would  have to have  two 
SUBIN processes to handle them. 

Now we noticed a strange thing: normally,  once a process terminates, it can never be started 
again. We saw that the Subnet Manager had to have the unique ability of being able to restart 
terminated processes. This was the only function in DFDM which had this ability, and it was in a 
very special off-the-shelf component. 
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In the work which followed DFDM (referred to above under the name FPE), we realized that 
these characteristics of dynamic subnets could be extended to static networks as well. We moved 
this ability into the infrastructure (removing the subnet names port), so that all subnets had a 
built-in monitoring process. This approach naturally coordinated the hierarchy of processes with 
the  stream  hierarchy.  In  addition,  since  the  monitoring  process's  other  job  is  to  stitch  the 
composite into the main network, we could now have "black box" composite components. This 
facility would allow subnets to be packaged as separate load modules for distribution, which 
could later be linked with other components by a developer to form the full application network. 
This seems very attractive, as a software manufacturer will be able to sell a composite component 
without having to reveal its internals (as would be required by DFDM)! We will also see later (in 
Chapter  20)  that  these concepts  give us  an intuitively straight-forward way of implementing 
fairly complex situations such as checkpointing long-running applications. 

We mentioned above how, in dynamic subnets, we have a "mother" process which monitors the 
execution of its  daughter  processes,  and can "revive"  them after  they have all  closed down. 
However, since the subnet cannot close down until all IPs have been received at all input ports, 
what would be the point of ever waking up the subnet again? Well, if that was all we could do, it 
would just be a performance improvement. However, we came up with an idea which we thought 
dovetailed in pretty neatly. Why not put markers in the data stream, such that the internal subnet 
thinks it is seeing end of data, and will terminate, but in fact there is more data to come, so it will 
be  revived?  We  did  this  by  adding  an  option  to  composite  components  called  substream 
sensitivity. This was implemented in DFDM for dynamic subnets, and in FPE as an option on all 
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composite components. Sunbstream-sensitive composites essentially keep track of the bracket 
nesting levels at each of their input ports, and whenever this level drops to zero for a given port, 
the port involved is closed, resulting in an "end of data" indication next time the daughter process 
does a receive from that port. Essentially they make substreams on the outside look like streams 
on the inside. Since you can nest subnets within subnets, each level of nesting strips off one level 
of bracketing (call it "the application onion"). 

Let us start with one input data port only. Suppose we have a "substream-sensitive" composite B, 
which contains C and D, as follows: 

The point shown with a solid semicircle is a substream-sensitive port
on B. 

[This is sort of a shorthand - the solid semicircle will be implemented as an 
"external port", which has no real input ports, but can access the input port 
of the subnet.]

Figure 7.2

Suppose that A generates a stream as follows: 
(a b c d e f)  (g h i)  (j k l m)...

reading from left to right. Then C is going to see IPs a, b, c, d, e and f, and then end of data. At 
end of data it terminates, as it has no upstream processes at the same level within its enclosing 
composite, enabling D to terminate also. If D was a Writer, it would then close the file it was 
writing to. However, we know (although the subnet doesn't) that C and D are not permanently 
"dead" - when the next open bracket arrives at B's input port, they will both be revived. As far as 
C and D are concerned, IPs  a through f constitute a complete "application", but, as far as B is 
concerned, each substream, e.g. a through f results in a single activation of the internal subnet. 

What happened to the brackets? Well, we could add a process to remove the enclosing brackets 
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of a substream, but it seemed a good idea to add the ability to substream-sensitive ports to drop 
the brackets if the designer wants. However, you may not always want this: for instance, if D was 
outputting IPs to B's output port, you might have to be able to put the brackets back on again. 

In this example,  you can see the insides of a composite working like a complete application 
within each activation of a composite. The power of this concept is that you can match levels of 
composite component to levels of nesting of substreams. So, substream structure can be related 
to subnet structure. I would like to record here the fact that this very powerful idea came from 
Herman van Goolen, of IBM Netherlands, and I feel it is very elegant. You can probably now see 
why we use brackets both to delimit substreams and as the delimiters which substream-sensitive 
composites respond to. 

If we have more than one input port on a substream-sensitive composite component, as described 
above, our composite will process one substream from each input port successively until all the 
input ports are exhausted. Processing of these input streams will therefore be synchronized at the 
substream level. Other kinds of synchronization are also possible, of course, but we have found 
this  type  to  be  the  most  generally  useful.  It  also  ties  in  nicely  with  the  requirements  of 
Checkpointing (see Chapter 20). 
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I am now going to describe some simple applications mixing reusable components and custom 
ones. We start with a fairly simple text processing application to make a few points about the 
design of applications in FBP. This is a classical programming problem, originally described by 
Peter Naur, commonly known as the "Telegram problem". This consists of a simple task, namely 
to write a program which accepts lines of text and generates output lines of a different length, 
without splitting any of the words in the text (we assume no word is longer than the size of the 
output lines).  This turns out to be surprisingly hard to do in conventional programming,  and 
therefore  is  often  used  as  an  example  in  courses  on  conventional  programming.  Unless  the 
student realizes that neither the input nor the output logic should be the main line, but the main 
line has to be a separate piece of code, whose main job is to process a word at a time, the student 
finds him or herself getting snarled in a lot of confused logic. In FBP, it is much more obvious 
how to approach the problem, for the following reasons: 

• words are mentioned explicitly in the description of the problem 

• since we have to select our IPs between each pair of processes, it is reasonable for the 
designer to treat words as IPs somewhere in the implementation of the problem. It would 
actually  be  counter-intuitive  to  deliberately  avoid  turning  words  into  IPs,  given  the 
problem description 

• there is no main line, so the student is not tempted to turn one of the other functions into 
the main line. 

Let us dig into the coding of this problem more deeply. We should have IPs represent words 
somewhere in the application. You will have realized also that we should have a Read Sequential 
on the left of the network, reading input records from a file, and a Write Sequential writing the 
new records onto an output file. Here is a partial network: 
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Figure  8.1
 

Now the output of Read Sequential and the input of Write Sequential both consist of streams of 
IPs containing words and blank space, so it seems reasonable that what we need, at minimum, is 
a component to decompose records into words and a matching one to recompose words back into 
records. Given the problem as defined, I do not see a need for any more components, but I want 
to stress at this point that there is no single right answer. Remember ROI? What you select as 
your basic black boxes depends on how much they are going to be used versus how much it costs 
to create them. 

Let us add our two new components into the picture: 
 

Figure 8.2 

Now we have another matched pair of components - in the diagram I have labelled them DC (for 
DeCompose) and RC for ReCompose). Components can always find out the actual size of any 
IP, so we do not have to provide the size of the incoming IPs to DC as a parameter. However, RC 
cannot know what size of IPs we want it to create, so this size must be passed as a parameter to 
its OPTIONS port (I didn't have to call it that - but it is good a name as any). So let's show an 
options IIP on RC. RSEQ and WSEQ will also need to know the identifiers of the files they are 
working with, so our diagram now looks like this: 
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Figure 8.3 

For completeness, I will give some possible pseudo-code for DC and RC. Remember that, once 
you have written and tested DC and RC, you have them forever. So it is worth the effort to get 
them "perfect" (as close to perfect as software ever gets!). One of the great advantages of FBP is 
that you can simply insert a Display process on any connection, e.g. between DC and RC, to see 
if the IPs passing across that connection are correct. So testing is very easy. 

In what  follows, I  have assumed (but not shown in the diagram) that  the input port  of both 
components is called IN and the output port is called OUT. 

DC (Decompose into Words): 
        define switch "in word" - initially off
        receive from IN using a
        do while receive has not reached end of data
                start at beginning of input IP
                do while not yet end of input IP 
                        if "in word" off and current char blank OR 
                                "in-word" on and current char non-blank
                                do nothing
                        else
                                change state of "in word"
                                if "in word" now on
                                        save pointer
                                else
                                        create word IP of length = 
                                          (current pointer - saved pointer)
                                        copy that number of chars to new IP 
                                        send created IP to OUT
                                endif
                        endif
                        look at next character
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                enddo
                drop a
                receive from IN using a
        enddo

RC (Recompose Words into Records):
        receive word IP from IN using a 
        do while receive has not reached end of data
                create output IP and set it to all blanks
                start at beginning of output IP
                do forever
                        if received word will not fit into output IP 
                                send output IP to OUT   
                                create output IP and set it to all blanks
                                start at beginning of output IP         
                        endif
                        move contents of word IP into output IP
                        if there is room for 1 more character 
                                move in single blank
                        endif
                        drop a
                        receive word IP from IN using a
                        if receive reached end of data, 
                                leave innermost loop
                        endif
                enddo                
                send output IP to OUT
        enddo

Maybe this logic can be simplified, but a component does not have to be simple on the inside - it 
should be simple on the outside, and above all it must work reliably! This point really illustrates a 
fundamental difference between conventional programming and FBP: I have just shown some 
pseudocode, and you may be feeling that we are back to conventional programming. However, 
another way of putting what I am trying to say is that, because we can program, it does not mean 
that we should. Most conventional programming, and even some of the new Object-Oriented 
approaches, still stress the production of new code. Many reuse approaches are based on finding 
what source code is available, and reusing it. Because code is such a malleable medium, and does 
not have an inherent component structure, we are always creating new stuff and we forget that 
the results  of our work may live long after  us and that  there is  a cost  to maintaining them, 
documenting and managing them. How many times have we heard, "It's less trouble to write my 
own than to find out what's out there"? In FBP, the orientation is the exact reverse: use what's out 
there, and only build new if you can justify the effort in terms of ROI. This is where experience 
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becomes valuable: after you have done the same job many times, you know whether other people 
will find components like DC and RC useful. If you know they won't, find another way to do the 
job! 

Now we have a matched pair of useful components, but, of course, you don't have to use them 
together all the time. Let's suppose we simply want to count the number of words in a piece of 
text. We have already mentioned the Count component in the Concepts chapter - it simply counts 
all its incoming IPs and generates a count IP at the end. It has an option which is substream-
sensitive (it generates one count IP for each incoming substream), but for now we will use it in 
its most basic form. In this form, it simply sends the count it has just calculated out via one 
output port, while the original incoming IPs are sent out of another one if it is connected (this is 
an  example of  an  optional  port).  This  type  of  component  is  sometimes  called  a  "reference" 
component,  meaning  that  the  original  input  IPs  are  passed  through  unchanged,  while  some 
derived  information  is  sent  out  of  another  output  port.  So  the  resulting  structure  will  look 
something like this (we won't bother to connect up Count's optional output): 

Figure 8.4 

We can keep on adding or  changing  processes  indefinitely!  These  changes  may result  from 
changing requirements, new requirements or simply the realization that you can use a component 
that was developed for one application on another. We talked in the chapter on Reuse about some 
of the principles behind designing components for reuse. 

As another more elaborate example, instead of counting the words, we could decide to sort them, 
alphabetically or by length. Once we have the words sorted alphabetically, it might be nice to be 
able to insert fancy heading letters between groups of words starting with the same letters, like 
some dictionaries.... Of course, once we have sorted them, we should eliminate duplicates. The 
resulting diagram would then look like this (partially): 
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Figure 8.5 

where RDUP means "Remove Duplicates" and IHDRS means "Insert Header Letters". 

It  will  come  as  no  surprise  that  text  processing  applications  have  been  very  productive  of 
generalized components. This is also the application area where the UNIX™ system has proven 
very productive. The UNIX pipe mechanism is very similar to FBP's data streams, except that 
UNIX communication is based on using streams of characters, whereas FBP's communication is 
by means of structured IPs. 

An excellent example of this kind of text-processing application is P.R. Ewing's publication a 
few years ago of a Concordance to the Ukrainian Bible (1988) - this was programmed using 
DFDM, and Philip found DFDM to be very well suited to this type of work. He has recently 
completed a Biblical Concordance for Xhosa (one of the languages of South Africa), using the 
PC-based THREADS software. He reports that, after spending between 100 and 150 hours trying 
to  develop  this  Concordance  using  conventional  (non-FBP)  software,  he  eventually  had  to 
abandon it unfinished. With THREADS he was able to produce a completed Concordance with 
about 40 hours of work (of course this does not include the time needed to input the Bible text). 
He told me that, as far as he was concerned, the big advantage of FBP is the fact that it simplifies 
the complexity of an application, and 40 hours vs. more than 100 hours certainly seems to bear 
this out. 

We have used the Sort function as a component a number of times in the foregoing examples. In 
conventional programming, Sort is usually packaged as a stand-alone utility,  although various 
exits are provided to allow its behaviour to be modified. What are the advantages of packaging it 
as an FBP component? People very often have the reaction that Sort  cannot be a good FBP 
component because it is too "synchronous" - all the input has to be read in before any of it can be 
sorted; then the sort proper takes place; then all the sorted records are output by a final merge 
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phase. However, we have found a stream-to-stream sort to be a very effective FBP component 
for the following reasons: 

• Performance: a Sort which is run as a separate job step has to use files for its input and 
output, and the control fields have to be in the same place in every input record. If we 
provide Sort as a stream-to-stream component, then data IPs which are to be sorted no 
longer  have to be written  to a file  first  (and do not  have to be retrieved from a file 
afterwards), but can simply be sent across a connection to the Sort, which in turn sends 
them on to the next process when it is finished, resulting in a considerable savings in I/O 
overhead. Actually, the "central" sort phase is the only part of the sort which cannot be 
overlapped with other processes. 

• Flexibility of positioning control fields: if the control fields are not in a standard place for 
all the input IPs, you can simply insert a transform process upstream of the Sort to make 
the key fields line up. 

• Eliminating unnecessary sorting: sometimes,  some of the IPs are known to be already 
sorted, in which case they can bypass the Sort, and be recombined with the sorted IPs 
later. This is often not practical when the Sort is a separate job step. 

• Improved sorting techniques: if you know something about the characteristics of your 
keys,  you may be able to build more complex networks which perform better  than a 
straight sort. For instance, if you are sorting on a name field, it might make sense to split 
the data 26 ways, sort each stream independently, then merge them back together - I don't 
say it will definitely, but you can try it out. The sort process can thus be implemented 
with other components or subnets for purposes of experimentation. 

Although some sorts are faster, a good rule of thumb is that the running time of most sorts is 
proportional to n.logn, where 'n' is the number of records. Since this is a non-linear relationship, 
it may be more efficient to split your sort into several separate ones. 

Here is a picture of a Sort with some IPs going around it, and with sort tags being generated on 
the fly by an upstream process (GTAG): 
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Figure 8.6

Actually Sort is an example of something I discovered quite early in the work on FBP: FBP 
enables you to tie together things which didn't expect to be tied together! If you can persuade 
something to accept and generate data packets, it can talk to other things which talk in terms of 
data. For instance, once you have converted Sort to a stream-to-stream component, it can talk to 
other utilities, HLLs, DB2, etc. They don't necessarily have to be callable - they just have to be 
able to accept and generate data once they are given control.  I  have written networks which 
contained  Assembler,  COBOL and  PL/I  programs,  all  in  the  same network.  I  also  built  an 
application which used a screen manager written in Assembler, REXX for all of its calculation 
logic, used reusable components for screen management  and GDDM/PGF for drawing charts 
when  requested  by  the  user.  Another  network  spanned  two  CMS  virtual  machines, 
communicating by means of VMCF. This is a point we'll come back to later: you can design a 
big network, and then split it across different machines, processors, software systems, etc. 

Incidentally, there is a flip side to this ability to tie things together 'without their knowledge': we 
alluded above to the fact that components have to be reentrant if they are going to multithread 
with  each  other.  Strange  things  happen  if  you  try  to  multithread  processes  which  are  not 
reentrant! After we had turned Sort into a stream-to-stream process, it seemed reasonable to want 
to run more than one Sort process in a single network. As long as one had fully completed before 
the other one started, we had no problems. When we tried to overlap two Sorts in time, strange 
things happened. We suspected that reentrancy was being violated, but it did not consistently 
cause problems. Some people reported that everything ran fine, others that it always crashed! 
After we ruled out the possibility that it was programmer-induced, we eventually figured out that 
some of the sort techniques used by Sort were reentrant (probably the more recent ones), and 
some not, so some file formats or volumes caused problems (because they triggered different sort 
techniques), while others did not. We decided that the safest thing to do was interlock the Sorts 
so that one couldn't start until the other had finished (this is not a great solution as it requires 
deciding which Sort should run first, which you will probably have realized by now runs counter 
to the philosophy of FBP). 
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This anecdote reminds me of a pitfall when using Writers to write to PDS's under IBM's MVS 
(even if you are not an MVS user, other operating systems support similar structures, so it may 
still  be instructive). PDS's are data sets which contain a series of subfiles (members),  with a 
directory  at  the  front.  A  number  of  programmers  used  multiple  instances  of  the  Writer 
component  in  DFDM to  try  to  write  more  than one  member  at  the  same time.  What  these 
programmers saw was that the resulting members seemed to have a mixture of each other's data! 
In MVS, we are so accustomed to treating PDS members as if they were ordinary files that it is 
not immediately obvious why writing two or more at the same time should cause problems. Of 
course, the moment it is pointed out, it becomes obvious: PDS's only "grow" at the end. If a PDS 
already has a member "A", and you decide to write to member "A", what actually happens is that 
you write the new data at the end of the PDS, and afterwards, when the new member is complete, 
the directory is updated to point at the new member (leaving what is often referred to as "gas" in 
the middle [this happens if you are updating a PDS member, or a member has been deleted]). If 
you try writing to two members concurrently, the two writer processes will see the same "end of 
PDS",  and  will  both  start  writing  at  the  same  spot.  The  two  processes  then  write  blocks 
alternately, after which both directory entries are updated to point to the old end of the PDS! 

Figure 8.7 

Now let's go back to the original Telegram problem, but first we are going to program it using 
conventional (control-flow) programming. Hopefully the reason for doing this will become clear 
soon. 

From the above discussion, we see that words are the key concept needed to make this problem 
tractable.  Once  we  realize  this,  we  can  go  ahead  and  code  it  up,  using  something  like  the 

- 98 -



Chap. VIII: Building Components & Some More Simple Applications

following call hierarchy: 
    

Figure 8.8 

As we have said above, it is not at all obvious at first in conventional programming that this is the 
right  way  to  tackle  this  job.  Most  people  who  tackle  this  problem  start  off  by  making 
GETWORD or  PUTWORD the  "boss"  program,  and promptly  get  into  trouble.  So we now 
realize that we have to "bring in a boss from outside" (call it MAIN), instead of "promoting" 
GETWORD or  PUTWORD  to  boss.  Now  MAIN  can  call  GETWORD and  PUTWORD  to 
retrieve and store a single word at a time, respectively. To do this GETWORD must in turn call 
GETREC and PUTWORD must call PUTREC, to look after the I/O. Now note that all four of 
these subroutines have to "keep their place" in streams of data (streams of words or streams of 
records). In the old days we did this by writing them all as non-reentrant code, so the place-
holder information essentially became global information. This is quite correctly frowned on as 
poor  programming  practice,  as  it  has  a  number  of  significant  disadvantages,  so  today  we 
normally manage this kind of place-holding logic using the concept of "handles". The general 
idea (for those of you who haven't had to struggle with this kind of logic) is for MAIN to pass a 
null handle (in many systems this will be a pointer which is initially set to zero) to GETWORD. 
When GETWORD sees the null handle, it allocates a block of storage and puts its address into 
the handle. Thereafter it uses this block of storage indirectly via the handle, and at the end of the 
run, frees it up again. Although this block of storage is allocated and freed by GETWORD, it is 
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considered to be owned by MAIN. This same logic is also used between MAIN and PUTWORD, 
between GETWORD and GETREC, and between PUTWORD and PUTREC. At the basic level, 
our problem is that subroutines cannot maintain internal information which lasts longer than one 
invocation.  In  contrast,  FBP components  are  long-running objects  which maintain  their  own 
internal information. They do not have to be continually reinvoked - you just start them up and 
they run until their input streams are exhausted. Thus, FBP components can do the same things 
subroutines do, but in a way that is more robust and, something of considerable interest for our 
future needs, that is also more distributable. It is important to note that FBP does not prevent us 
from using subroutines, but my experience is that they are most appropriate for such tasks as 
mathematical calculations on a few variables, doing look-ups in tables, accessing data bases, and 
so on -  in other  words tasks which match as closely as possible the mathematical  idea of a 
function. Such subroutines are said to be "side-effect free", and experience has shown that side-
effects are one of the most common causes of programming bugs. Hence subroutines which rely 
on side-effects for their proper functioning are a pretty poor basis on which to build sophisticated 
software! 

At this point, to get you back in the data flow mood, let's talk about the text-processing example I 
talked about above. You remember the above example, where we want to take some text, split it 
into individual words, sort them, remove duplicates, insert fancy letters on every letter change, 
and print out the result. Oh, and let's print it out in two columns. Using FBP, this is quite simple - 
actually, we have just described the FBP network structure! I will leave this as an exercise for the 
reader. It also illustrates a point [the late systems architect] Wayne Stevens has made frequently - 
namely, that we very often want to string a whole bunch of functions together in a serial manner. 
We say "do A and B and C and...", which is basically the same as "take the output of A and feed 
it to B; now take the output of B and feed it to C, and so on..." This is exactly the same as the 
pipelines of the UNIX system or MS DOS. This is a very natural and important function, and it is 
essential to be able to express this kind of linkage with a minimum number of key-strokes. In the 
DFDM and THREADS interpretable  notation we use two key-strokes  (->)  to  represent  this 
relationship. 

So far, we have worked with quite simple structures which either string together "filters" in what 
is sometimes called a "string of pearls" pattern, or we had one data stream generate more than 
one ("divergent" patterns). There is a point to be made about divergent flows: once two streams 
diverge, they will no longer be synchronized. Some software systems go to a lot of trouble to 
keep them synchronized,  but our experience is  that,  most  of the time, it  is  not necessary or 
desirable. There are ways to resynchronize them if you really have to, but you may find it's not 
worth the trouble! For one thing, in the chapter on deadlocks we will find that resynchronization 
is a potential cause of deadlocks. 

People very often split data streams so that different parts of their networks can handle different 
IP types  -  this works best  if  you do not need to retain any timing relationships between the 
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different types. If you do, there is a variant of the "string of pearls" technique that you may find 
useful: have each "pearl" look after one IP type and pass all the other ones through. Its (partial) 
pseudo-code would then look as follows: 
                receive from port IN using a 
                if type is XXX
                        process type XXX
                endif
                send a to port OUT

You can then string as many of these together as you want and each pearl will look after its own 
data type and ignore all the others. 

Now it's time to talk about various types of Merge function. There is a basic merge built right 
into FBP - the first-come, first-served merge. This is done very simply by connecting two or 
more output ports to one input port, as follows: 
  

Figure 8.9 

where ports OUT of A and OUT of B feed into port IN of C. IPs being sent out along this 
connection to the IN port of C will arrive interleaved. The IPs sent out by a single process will 
still arrive in the correct sequence, but their sequencing relative to the output of the other process 
will be unpredictable. Why would you use this structure? Surprisingly often! C might be a Sort, 
so the sequence of its incoming IPs is going to be changed anyway. The IPs from the two output 
streams may be easily distinguishable,  so  we can always  separate them out later.  C may be 
interested in receiving its input data as fast as possible - any additional sequencing may cause 
delays, and in fact may even cause deadlocks. 
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Now perhaps the first-come, first-served merge may not be adequate, in which case we will need 
a process at the junction of the two streams. This may be a custom-coded merge component, or 
you may be able to use one of the ones supplied with the FBP software, for instance Collate or 
Concatenate. Both of these use one or more port elements of a single array port to handle their 
input streams, so we will use this convention. The reason for this is that they can handle any 
number of input streams up to the implementation maximum. Of course, custom components 
could call one input port JOE and the other one JIM - it's up to the developer (of course assuming 
the component's users will put up with it!). 

Our diagram now looks like this: 

Figure 8.10 

Now we have: 

• OUT of A connected to IN[0] of C 

• OUT of B connected to IN[1] of C 

• OUT of C connected to IN D 

If C is a Collate, then the output of A will be merged with the output of B according to key 
values - usually the key fields are specified to Collate by means of option IPs. Alternatively the 
Collate  may  use  one  or  more  named  fields  which  will  be  related  to  the  IPs  by  means  of 
descriptors (see that chapter). One might also visualize Collates which are substream-sensitive - 
we might want to merge substreams based on a particular field in the first IP of each substream. 

Now, if we were to use Concatenate instead of Collate, then what we are saying is that we want 
C to send all of A's output on to D before it accepts any of B's output. As we said above, there are 
some situations where this can be useful, too. Collate, however, is a very powerful component, 
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and  in  conjunction  with  the  ideas  described  in  the  next  chapter,  significantly  simplifies 
application  programs  which  would  be  extremely  complex  using  conventional  programming 
techniques.
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We are now going to expand on the use of the Collate component mentioned in the previous 
chapter. This chapter will also show how Collate, substreams and control IPs can be combined to 
address one of the most difficult  types  of conventional business batch application.  The main 
function of Collate, just as it was for the Collator Unit Record machine from which it gets its 
name,  is  to  merge  the  IPs  in  its  incoming  data  streams  based  on  values  in  key  fields  (the 
definition of these key fields is normally specified in an options IP). In most applications, we 
have more than one key field,  which are used to specify different  levels of grouping. As an 
example, let's take a file of bank accounts within branches. In this particular bank, we'll say that 
account numbers are not guaranteed to be unique across branches. Another way of saying this is 
that  to  make an account number unique across the whole bank, we must specify the branch 
number. 

Suppose we have an application where a stream of banking transactions must be run against a 
stream of account records: we first sort both streams by account number within branch number. 
Now in conventional programming, we have to write an "Update" program. I once figured that 
something like a quarter of all business programs running today are Updates! Whether or not that 
is the right figure, Update programs are hard to code and harder to modify, and yet  the only 
assistance programmers have ever received is a piece of paper, handed down from father to son, 
showing the basic logic for Updates, which is a pattern of moves and compares usually called the 
"Balance Line"  technique.  This  logic  then has to  be modified  by hand to suit  the  particular 
situation you are faced with. However, it is still only a description of an approach - to adapt it to 
a particular application you have to massively modify it.  I  once had the dubious pleasure of 
having to modify an update program whose author had written the client an explanation of why 
his request could not be satisfied, which started: "Owing to the limitations of data processing,..." 
My  clear  recollection,  after  almost  25  years,  is  that  modifying  that  program  (and,  for  a 
conventional program, it was really quite well-written) was not quite impossible! 
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Now imagine what you could do if you had a prewritten, pretested component for collating data 
streams. Let us imagine that we have a stream of transactions and a stream of accounts, both 
sorted  by  account  number  within  branch.  We  will  now  collate  them  into  a  single  stream, 
specifying branch number and account number as major and minor control fields, respectively. 
When Collate finds two equal records from two different port elements, it outputs the one from 
the lowest-numbered element first. The resulting output stream will contain the following sort of 
pattern: 
IP type     branch   acct #      date       amount   DEP/WD
 account        1        1
 trans          1        1      1992/3/12     12.82     DEP
 trans          1        1      1992/3/12    101.99     WD
 trans          1        1      1992/3/12     43.56     WD
 trans          1        1      1992/3/26     54.77     WD
 trans          1        1      1992/3/26     12.26     WD
 
 account        1        2
 trans          1        2      1992/3/03     34.88     DEP
 trans          1        2      1992/3/03     10.00     WD
   . 
   .
   .
     
 account        2        1
 trans          2        1      1992/2/29     25.99     DEP
 trans          2        1      1992/3/25     87.56     DEP
 account        2        3
 trans          2        3      1992/3/01     34.88     WD
 trans          2        3      1992/3/17     88.22     DEP
   .
   .

Figure 9.1 

Notice that the effect of Collate operating on sorted input streams is to give us a nicely sequenced 
and grouped data stream, consisting of two kinds of data IP. The job of the process downstream 
of Collate is therefore much simpler than the conventional Balance Line, which has to do this 
grouping as well as implement the required business logic. A conventional Update also has to 
worry about what happens if one file is exhausted before the other. Instead, in our FBP solution, 
the actual business logic (as compared with all the logic of synchronizing the two data files) sees 
one IP at a time, determines its type, and decides what to do with it. In what follows, we will call 
this  process  UPDATE_ACCTS.  One rule of  thumb in conventional  programming is  that  the 
complexity of a program is roughly proportional to the square of the number of input files. Just 
one  reusable  component,  Collate,  therefore  can reduce the  complexity  of  UPDATE_ACCTS 
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significantly! 

So far we have talked about the branch and account levels. Now let's assume we want to group 
transactions by date - bank statements often only show one subtotal per day. This then gives us 
three grouping levels, most of which are only recognized by changes in control fields. A change 
of account number is recognizable by the arrival of a new Account IP, but this cannot tell us 
when we have started a new branch. So a lot of the logic in a conventional Update is keyed to 
changes in value of control fields. Now, Collate has to look at all the control field values anyway, 
so it would be nice if we could have Collate figure out the groupings and pass that information to 
downstream processes, which would therefore be relieved of all this comparing to see when a 
given group starts or finishes. How does Collate pass this grouping information downstream? 
You guessed it! We use the "bracket" IPs mentioned in Chapter 3. 

Bracket IPs have a recognizable type which follows a special convention, so that they can never 
conflict with user-defined types. Brackets come in two flavours: open and close brackets. They 
may also contain real data (if their IP length is non-zero), which by convention we use for the 
name of the group they delimit.  Let's get Collate to insert some brackets into its output data 
stream, resulting in a collated data stream that looks like the following diagram. As before, I will 
use bracket symbols to represent open and close bracket IPs, but this time we will show the 
names  of  the groups they refer  to  in  the data  part  of  the bracket  IP ("date"  means  a  group 
comprising all the deposits and withdrawals for a given date). To make things a bit clearer, I will 
show a "level number" (L) in front of each IP - open brackets increase the number, close brackets 
decrease it). I will just show the first few IPs of the collated stream: 
L  IP type     branch    acct #     date     amount   DEP/WD
0 |<            branch
1 |<            account  
2 |account          1        1
2 |<            date
3 |trans            1        1    1992/3/12    12.82    DEP
3 |trans            1        1    1992/3/12   101.99    WD
3 |trans            1        1    1992/3/12    43.56    WD
3 |>            date
2 |<            date
3 |trans            1        1    1992/3/26    54.77    WD
3 |trans            1        1    1992/3/26    12.26    WD
3 |>            date
2 |>            account
1 |<            account
2 |account          1        2
2 |<            date
3 |trans            1        2    1992/3/03    34.88    DEP
3 |trans            1        2    1992/3/03    10.00    WD
2 |>            date
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Figure 9.2 

Generally, the logic of UPDATE_ACCTS will consist of a "case" statement based on the type of 
the incoming IP.  An open bracket  will  cause counters  and totals  for  the  correct  level  to  be 
initialized to zero; a close bracket will cause an IP containing the counters and totals for that 
level to be sent to an output port. We won't even have to reinitialize the counters and totals at this 
point because we know that another open bracket will be coming along shortly (or end of data). 
We could either update the counters and totals at every level for every incoming data IP, or just 
roll the values into the next level up at close bracket time - it seems simpler to choose the latter. 
There is some redundancy in the data structure, as an account IP is always immediately preceded 
by an account open bracket, but this is much better than not having enough data! Since we will 
be needing information from the account IP, we can just ignore the account open bracket, or we 
can do a cross-check that they are both present ("belt and braces" programming - that's "[belt 
and] suspenders" for American readers!). 

So far the main piece of logic for UPDATE_ACCTS (the process downstream of the Collate) 
looks roughly like this: 
receive incoming IP
   begin cases based on IP type
       case: open bracket for branch
          initialize counters and totals for branch 
       case: open bracket for account
          initialize counters and totals for account 
       case: open bracket for date
          initialize counters and totals for date
      
       case: account
          pick up account info 
       case: transaction
          increment counter for debit or credit
          add amount to debit or credit total 
       case: close bracket for date
          output IP containing counters and totals for
            date 
          roll these values to account level 
       case: close bracket for account
          output IP containing counters and totals for
            account 
          roll these values to branch level 
       case: close bracket for branch
          output IP containing counters and totals for
            branch 
   end cases

Figure 9.3 
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Notice that these groupings are perfectly "nested", and at any point of time we are only looking at 
one level or at most two adjacent ones. This suggests that we could handle this kind of logic very 
elegantly using a push-down or "last in first out" (LIFO) stack. You will remember that this is a 
storage structure which is added to and removed from at one end only. We also have to decide 
what kind of data structure to hold all these counters and totals in. One possibility would be an 
array, but for each level we have to eventually output an IP containing the values for that level, 
so why not hold the values in IPs all the time? This kind of IP is called a control IP, and it can be 
described as an IP whose lifetime corresponds exactly to the lifetime of a substream, which it can 
be said to "represent". 

Now we can put these techniques together and deduce that we will  be working with a  stack 
containing control IPs (actually their handles). So the above logic becomes much simpler. It now 
reads something like this: 
 receive incoming IP
   begin cases based on IP type
       case: open bracket 
          create IP for this level
          initialize counters and totals for this level
          push IP onto stack 
       case: account
          pick up account info, insert into account IP 
       case: transaction
          increment counter for debit or credit in IP
            currently at head of stack
          add amount to debit or credit total in IP 
            currently at head of stack
       
       case: close bracket 
          pop IP off stack
          roll counters and totals in this IP into IP
            currently at top of stack, if there is one
          output IP which was just popped off stack  
   end cases

Figure 9.4 

When we say "create an IP" in the above logic, we may simply use the incoming IP if there is a 
characteristic type at the beginning of the group. Bear in mind, however, that the IP must have 
data fields in it for the totals. The most obvious technique is to create a control IP, copy fields 
such as identifiers across from the incoming IP (frequently the one after the open bracket) into 
the control IP, stack the control IP and throw away the original incoming IP. A faster technique, 
though, which can sometimes be used, is to arrange for the incoming data to be put into a bigger 
IP at the time it is read in by the application. It can then be stacked immediately, without the 
tedious "create new, copy, destroy old" sequence. 
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Now we have  our  control  IPs,  what  do  we use  as  a  stack?  AMPS had a  stack  mechanism 
specifically for this kind of logic, which was actually a kind of connection (one that was only 
attached at one end, like a cul de sac in a city). The later versions of DFDM did not provide stack 
mechanisms, but, since we are only dealing with one component, it was easy enough to set up an 
array  of  IP  handles  in  the  process's  working storage  and "push"  and "pop"  (the  basic  stack 
operations) by incrementing or decrementing an index over the array. However, I happen to like 
stacks,  and  we  shall  see  in  a  later  chapter  there  are  striking  similarities  between  the  way 
components parse their input streams and the way compilers parse their input.  In both cases 
stacks are the natural mechanism for keeping track of nested structures. We have accordingly 
provided a stack mechanism in THREADS. 

You may have noticed that Figures 9.3 and 9.4 did not have the familiar "do while receive has 
not reached end of data" - this is because they are written in a style which assumes that they end 
execution after processing each IP. In FBP an inactive process will be invoked the next time an 
IP arrives at any of its input ports, so this kind of component will be invoked once for each 
incoming IP. A result of this is that it cannot maintain continuity across multiple IPs, but this is 
where the stack comes in. Since the stack is outside the process's local storage, continuity can be 
maintained across the invocations using the stack. This style  of component is called a "non-
looper", as opposed to components written in the "do while receive has not reached end of data" 
style,  which  are  referred  to  as  "loopers".  This  is  not  an  externally  detectable  attribute  of  a 
component, but just depends on when and how often the component decides to end processing - 
as long as there is data to be processed, it will continue being reinvoked. 

You may be wondering what the advantages of non-loopers are, if any. Well, for one thing, non-
loopers end execution more frequently,  so IPs which have not been disposed of are detected 
sooner, making such errors easier to find. Also, non-loopers' local storage is only used within one 
invocation, so there is less opportunity for one IP's logic to interfere with another's. Also we shall 
see in the chapter on Checkpointing (Chapter 20) that there is an advantage to having processes 
yield control as often as possible. As always, there are pros and cons. 

Obviously, there is still some application logic left to be written for UPDATE_ACCTS, but I 
have tried to show that the approach of holding control IPs in a stack (together with a generalized 
Collate) does significantly simplify the remaining piece of logic you do have to write. One of the 
things that also makes this logic simpler is the fact that every action is associated with the arrival 
of a distinct type of IP (this is even more obvious in the case of non-loopers),  rather than a 
change in value - this is what allows one to cleave the logic of such a component into distinct 
self-contained cases.  When talking about  such logic,  I  often find it  useful  to  refer  to  "open 
bracket  time",  or "detail  time".  An incoming IP triggers an action,  which starts  up and then 
finishes, readying the process for the arrival of the next IP (or end of data). In a later chapter, I 
will try to show that the code we still have to write has such a simple structure that we can begin 
to think about generating it semi-automatically from some kind of specification other than a HLL 
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program. 

By the way, as you work through this kind of logic, you may notice a characteristic flavour of 
FBP coding:  very  little  of  the  data  you  will  be  dealing  with  actually  resides  in  a  process's 
working storage - the vast majority of it will be in IPs, very often control IPs like the ones we 
have just been discussing. When you think about it, this should not be that strange - in a real life 
office, most of your data is in files, memos or on the computer - how much data do you have to 
hold in your personal short-term memory? I don't know about you, but I try to hold onto as little 
data as possible for as short a time as possible (after which I destroy it, pass it on it or file it - just 
like IPs).
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In this chapter, we will be working with a more complex example, the Sales Statistics application 
described in  (Leavenworth  1977).  The referenced  paper  describes  an application  in  which  a 
sorted detail  file of product  sales is  run against  a product  master  file,  producing an updated 
master file and two reports: a summary by product and a summary by district and salesman. The 
figure on the next page, which originally appeared in (Morrison 1978), shows the FBP process 
network for this application. 

In  the  conventional  approach  to  building  this  application,  we  would  first  split  off  the 
district/salesman summary into a separate job step preceded by a Sort.  This leaves us with a 
function which accepts  two input  files  and generates  three  outputs  (updated master,  product 
summary and Sort input, also referred to as extended details). This function must pass details 
against masters, take care of the fact that one of the files will usually terminate before the other, 
handle control breaks, detect out-of-sequence conditions, etc., etc. 

As we said in the previous chapter,  the Collate component is key to simplifying this kind of 
application. The resultant diagram looks like this: 
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Figure 10.1 

where 

• R is a Read component. 

• W is a Write component. 

• COL is a generalized Collate which merges two or more streams on the basis of specified 
control fields and inserts bracket IPs between IPs with different control field values. (If 
used with only one stream, it simply inserts bracket IPs - this is the case in the second 
occurrence of COL). 

• P is a Print component. 

• TR1 and TR2 correspond to Tran-1 and Tran-2, respectively, in B. Leavenworth's paper 

• SRT is a generalized "Sort" component which sorts the Extended Details coming out of 
Tran-1, by Salesman within District. 

The output of the Collate component consists of sequences of groups, called "substreams", each 
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consisting of an open bracket, a master, zero or more details, and a close bracket. 

This can be shown schematically as follows: 

Figure 10.2 

J-D. Warnier (1974) uses a vertical form of the above diagram to define the input and output files 
of an application, and uses this to determine the structure of the code which has to process them. 
Unfortunately, control flow programming requires that one of the files has to become the driver 
in terms of the overall program structure, so that, if there are any significant differences between 
the structures of the different files, the program structure becomes less and less easy to derive 
and understand, and hence to maintain. In FBP, this structure tells us important things about just 
those  components  which  receive  or  send  this  particular  stream  structure,  so  it  remains  an 
extremely useful device for understanding the logic of the application. 

The input stream for TR1 is shown as it might be expressed using an extension of J-D Warnier's 
notation: 
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Figure 10.3 

Of course, in Warnier's book, the above type of diagram is used to describe actual files, rather 
than FBP streams, but I believe it generalizes quite nicely to IPs, substreams and streams. The 
last column, of course, is fields within IPs. 

Another  methodology with close affinities  to  Warnier's  is  the Jackson methodology,  already 
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alluded to. He uses a horizontal version of this notation, using asterisks to indicate repeating 
items. Using his notation, this diagram might look as follows: 
  

Figure 10.4 

Now, going back to our example, TR1 generates three output streams - one consisting of updated 
master records, one of summary records, which are similar to masters but have a different format 
(they are intended for a report-printing component), and one of "extended" details: detail records 
with an "extended price" field (quantity times unit price) added. 

The following computations must be performed: 
extended price (in detail):=
        quantity from detail * unit price from corresponding
            master record
product total (in summary):=
        sum of extended prices over the details relating
           to one product master
year-to-date sales (in summary and updated master):=
   
        year-to-date sales from incoming master record +
           product total

Figure 10.5 

We  have  talked  above  about  using  non-loopers  with  stacks  to  handle  nested  streams  and 
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substreams. If we add a stack to our TR1 components, we get the following "blown up" picture of 
TR1 (the stack is not shown in a network definition - I just show it because it is "external" to the 
process): 
 

Figure 10.6 

Here is the logic that needs to be performed for each incoming IP (as you can see, it is very 
similar to the logic we showed in the previous chapter): 

• At "open bracket time", 

• create a control IP 

• clear the total quantity field in this new IP 

• store the IP in the stack 

• At "master time", 

• obtain the control IP from the stack 

• copy the information from the incoming master into the control IP, such as unit 
price, year-to-date sales, etc. 

• discard the master IP 

• replace the control IP in the stack (you have to remove an IP from the stack before 
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it can be processed) 

  
• At "detail time", 

• obtain the control IP from the stack 

• update the total quantity by the quantity in the detail IP  

• calculate an extended price for the detail 

• put out the extended detail to its own output port 

• return the control IP to the stack 

• At "close bracket time", 

• obtain the control IP from the stack  

• create a summary 

• calculate the product total (dollars) 

• format the summary IP and put out to the summary port 

• create  a  master  IP  with  the  information  from  the  control  IP,  and put  to  the 
"updated master" output port 

• discard the control IP 

• the stack is now empty, so that when the next open bracket arrives, a new control 
IP can be "pushed" onto the stack, preserving the stack depth 

• At end of data, 

• the process closes down, resulting in its output ports being closed, which in turn 
allows its downstream processes to start their own close-down procedures. 

Note that summary and updated master IPs are not output until "close bracket time", as all the 
details for a given master have to be processed first.  

FBP is chiefly concerned with dynamic IPs, rather than with variables. Although it might at first 
glance seem that this would result in undisciplined use and modification of data, in fact we have 
better control of data because each IP is individually tracked from the moment of creation to the 
time  it  is  finally  destroyed,  and  it  cannot  simply  disappear,  or  be  duplicated  without  some 
component issuing a specific command to do this. During an IP's transit through the system, it 
can only be owned by one process at a time, so there is no possibility of two processes modifying 
one IP at the same time. We in fact monitor this at execution time, by marking an IP with the ID 
of its owning process: the act of getting addressability to an IP, if successful, confers "ownership" 
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of that IP on the process doing it. 

In fact, in this example almost all modifiable data is in IPs, and there is no global data at all. FBP 
did not require a global facility during its earlier years, and, although it has been added to some 
dialects of FBP, it is still only used very occasionally. 

We can also use Figure 10.1 to illustrate how easy it is to modify this kind of network, whether it 
is to satisfy business requirements, improve performance, or for whatever reason. Here is what I 
said in my article (Morrison 1978) about how this diagram might be modified (this article uses 
the term DSLM for the cluster of concepts which we now call FBP): 

"A valid objection can be raised that sorting is just one way of arranging information 
into a desired sequence, and that the decision as to the exact technique should not be 
made too early. The point is that DSLM allows the designer to concentrate on the 
flow  of  data  and  in  fact  makes  the  available  options  more  visible  and  more 
controllable. For instance, in the above example the designer may decide that, for 
various reasons, he prefers to construct a table of district and salesman codes and 
totals, which will be updated randomly as the extended details come out of TR1." 

I apologize for the use of "he" and "salesman", but this was 15 years ago [when the book was 
written - 1994]! I then went on to suggest that the subnet demarcated by the dots in the diagram 
below could be replaced by a network which updates totals at random, then signals a scan and 
report function to display the resulting totals, i.e. 
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Figure 10.7 

could be modified as follows: 

- 119 -



Chap. X: Some More Components and Simple Applications 

Figure 10.8 

where RAND is  a  component which updates  totals  in a  table  at  random, while  SCAN goes 
through all the totals at end of job, generating report lines. 

How does SCAN get triggered and, once triggered, how does it get access to the table which has 
been built by RAND? Well, since, in FBP, all that moves through connections are the handles for 
IPs, why not have RAND just "send" the whole table? This ensures that SCAN doesn't start until 
RAND has finished, plus it takes care of SCAN getting addressability to the table - at the right  
time! In conventional programming, tables don't move around - and, in fact, in FBP they don't 
either, but it is very convenient to make them appear to! 

I mentioned a "report generation" component above. You will find this essential for your batch 
business applications,  and it  illustrates the power of FBP and also FBP's ability to help you 
divide function into manageable components. For almost all business applications we found that 
we needed a component which would accept formatted lines and combine them into report pages. 
An upstream process can have the job of generating the formatted lines, and this type of function 
should be kept separate from page formatting. FBP is a "black box" reuse tool, and in fact your 
Report Generator component can be used as a black box by your applications. As such, it can 
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implement  the  standards  for  reports  in  your  installation,  and  it  can  make  it  easier  for 
programmers to conform to your standards by making it less work (definitely the best way to 
encourage adherence to standards)! So far, so good. However, every shop has a different report 
standard, so you will have to build your own black box to embody your own standards. Luckily it 
is easy to build new components using the FBP API calls. If we decide that we want to distribute 
this kind of component more widely, it seems to call for a different distribution technique: either 
in source format, or implemented as a pure black box, but with installation-provided exits, or as a 
black box supporting a mini-language. Perhaps we should call this a "grey box". 

Here is a list of the facilities we provided in the Report Generator we used with DFDM in our 
shop: 

• accept two lines of permanent title information as run-time options, and combine these 
with date information in an installation-standard format 

• accept two dates for the run: the actual date and the effective date ("as of" date) 

• accept additional title information from an additional IP stream which could be changed 
dynamically (on receipt of a "change title" signal) 

• generate page numbers 

• accept a signal to reset the page number 

• generate an "end of report" box at the end of the report (this lets the human receiving the 
report know it is complete) 

• generate a "report aborted" box on the report on demand 

• support  all  of  the  above features  in  English,  French or  bilingual  English  and French 
(under control of an option). 

This may seem like a long list, but it basically embodied a preexisting set of shop standards, 
some of which were supported by subroutines,  but some weren't.  Now, instead of having to 
mandate  a  standard  which  people  see  as  extra  work,  we  had  a  component  which  did  it 
"automatically". In our experience, it is much easier to enforce a standard which saves people 
work. If they use your component, their reports will follow shop standards, and your systems will 
also be more reliable and cheaper to build and maintain. You can tell your developers, "We don't 
mind if you don't follow standards, but it'll cost you, and, if you miss your deadlines, we'll be 
asking for an explanation!". The same philosophy was followed in the early days of hardware 
development. Designers were perfectly free to create new components, but they had to carry the 
whole cost of development, testing, etc., themselves. Today, it is no coincidence that the vast 
majority of personal computers are built around a very small number of different CPU chips. 
This is a variant of a point we will come back to often - only by changing the  economics of 
application development will we get the kind of behaviour we are trying to encourage. 
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One last point may appear obvious at first: this Report Generator assumes that its input IPs are 
fully  formatted  report  lines.  Formatting  of  these  report  lines  may  logically  be  split  off  into 
separate  components.  Now,  programmers  rooted in  conventional  programming  may feel  that 
such rigid separation is not possible, but they have not had the experience of using a separate 
component which makes such separation attractive economically, as well as logically. Once such 
a  thing  exists,  people  find  that  they  can  make  intelligent  decisions  balancing  esthetic 
considerations against economic ones. Without such a component, you don't even have a choice! 

A component like the Report Generator can be added to your application incrementally - that is, 
you first get your application working with a simple line-by-line printer component, then replace 
that with the report generation component to produce a good-looking report. Although you are 
introducing more function into your application, you can predict very accurately how much time 
it is going to take to do this. In conventional programming, many writers have commented on the 
exponential  relationship  between size  of  application  and resources  to  develop it.  This  graph 
typically has the following shape: 

 

Figure 10.9 

Development using FBP shows an essentially linear relationship, as follows: 
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Figure 10.10 

Superimposing the two graphs (even if we allow for the possibility that start-up costs may be 
slightly higher - in FBP you tend to do more design work up front), we get the following picture: 

Figure 10.11 

Clearly  at  some  point  (and  we  have  found  this  to  occur  even  with  surprisingly  small 
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applications), FBP's productivity starts to overtake that of control flow, and in fact gets better the 
larger the application.  FBP scales up! My colleague Chuck (he of the 200-process application) 
didn't have to worry that his application was going to become harder and harder to debug as it got 
bigger - he just built it methodically, step by step - and it has since had one of the lowest error 
rates of any application in the shop. Finally, in case you think that this only worked because he 
was  a  single  individual  who  could  hold  it  all  in  his  head,  ask  yourselves  what  are  the 
requirements for successfully managing a big project. Surely, some of the more important ones 
are exactly what FBP provides so well: a consistent view, clean interfaces and components with 
well-defined functions. 
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[Recent addition: The reader will  note similarities  between this chapter and Object-Oriented  
concepts.  We in fact  implemented a number of  the concepts  described below in a recent  e-
business application using the JFBP package. This was a layer of function below FBP (it didn't  
care how the higher levels modules were hooked together), and it totally prevented currency  
amounts from being multiplied together! To achieve this, of course, you have to hide the internal  
representation of a currency amount, which in turn means being willing to continually add more  
and more methods to each class as people come up with new uses. Maybe one day we will have 
identified all possible uses of currency amounts (or any other business data type)... but I'm not  
holding my breath!]

Up to now, you have probably noticed that we have been assuming that all components "know" 
the layouts of the IPs they handle. The layouts of all IP types that a component can handle and 
the IP types that it can generate become part of the specification of that component, just as much 
as the overall function is. If you feed something raw material it can't digest, you are bound to 
have problems, just as in the real world! 

In conventional programs, you usually use the same layout for a structure or file record in all the 
subroutines of a program - in FBP actually only each pair of neighbouring processes has to agree 
on the layout.  This means that a process can receive data in one format and send it  on in a 
different format. If two neighbouring processes (perhaps written by different suppliers) are using 
different layouts, all you have to do is add a transform process in between. 

Now suppose you at first wanted to have two neighbouring processes communicate by means of 
20-element arrays. You then decide this is too restrictive, so you stay with the arrays, but allow 
them to communicate the size of the arrays at run-time. This is a type of "metadata", data about 
data, and can be as much or as little as the two processes involved want. For instance, their 
agreement might specify that the array size is to be positioned as a separate field (it could even be 
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a separate IP) ahead of the array. 

Now most higher level languages don't support metadata very well,  so you are dependent on 
having the data formats imbedded in a program. Also, it is easy for old data to get out of step 
with  the  programs  that  describe  them.  There  is  a  perhaps  apocryphal  story  that  somebody 
discovered a few decades ago that the majority of the tapes in the US Navy's tape library were 
illegible. It wasn't that the tapes had I/O errors - they were in perfect shape physically - but the 
problem was that the layouts of the tape records were hard-coded within code, and nobody knew 
which programs or copy code described which tapes! I'm sure that such a problem, if it ever 
existed, will have been remedied long ago! [tongue firmly planted in cheek!] 

In DFDM we extended the idea of metadata by providing run-time descriptions which could be 
attached to IPs passing across a connection.  DFDM allowed the creator  of an IP to attach a 
separately  compiled  descriptor  to  the  IP,  which was  used  by special  DFDM services  which 
allowed fields to be accessed by name. Whenever an IP was created, the "allocate" function could 
optionally specify a descriptor which was to be permanently associated with that IP. All the IPs 
of the same type would share the same descriptor [shades of OO]. 

In DFDM these access services were called GETV and SETV ("get value" and "set value"). They 
had the advantage that, if you ever wanted to move a field (call it AMOUNT) from one place to 
another in the structure containing it, you didn't have to recompile all the programs referring to it. 
Another advantage was that, with a single call, a component could access a field which might be 
at different offsets in different types of incoming IP. For example, the field called AMOUNT 
could be at different locations in different IP types, and the component would still be able to 
access it or modify it, as long as the IPs had descriptors. The DFDM GETV and SETV services 
(and their descendants) were designed to be called from S/370 Assembler or from the HLLs we 
supported. They also provided limited conversion facilities between similar field formats - for 
example, between 2-byte and 4-byte binary fields, between different lengths and scales of packed 
decimal, or between varying and non-varying character strings. Thus you could specify that you 
wanted to see a binary field as 4 bytes in working storage, even though it was only 2 bytes in the 
IP. As of the time of writing, these services have not been implemented for THREADS. 

Without such a facility,  the layout  of incoming IPs has to be part  of the specification of all 
components.  This points  up another  advantage of GETV and SETV: if  a component  is  only 
interested  in  three  fields,  only  those  specific  field  names  have  to  be  mentioned  in  the 
specification for the component, rather than the whole layout of the IPs in question. 

When you add this facility to the idea of option IPs, you get a powerful way of building more 
user-friendly black boxes. For instance, you could write a Collator which specified two field 
names for its major and minor keys, respectively. It would then use GETV to locate these fields 
in the correct place in all incoming IPs. "Collate on Salesman Number within Branch" seems 
much more natural than "Collate on cols 1-6 and 7-9 for IP type A, cols 4-9 and 1-3 for IP type 
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B," and so on. Thus it is much better to parametrize generalized components using symbolic field 
names,  rather  than  lengths  and  offsets.  The  disadvantage,  of  course,  is  performance:  the 
component  has  to  access  the  fields  involved  using  the  appropriate  API  calls,  rather  than 
compiled-in  offsets.  However,  the  additional  CPU  time  is  usually  a  negligible  cost  factor 
compared with the cost  of the human time required for massive recompiles when something 
changes, or, still worse, the cost of finding and correcting errors introduced while making the 
changes! 

["Smart" Data...]

When we looked at the problems of passing data descriptions between components, we rapidly 
got into the problem of what the data "means": in the case of our conventional Higher Level 
Languages, the emphasis has always been on generating the desired machine instruction. For 
instance, on the IBM S/370, currency is usually held as a packed decimal field - 2 digits per byte 
(except  the last  byte,  which has one digit  and a sign),  and usually amounts are held with 2 
decimal  places  (these  usually  have  special  names,  e.g.  cents  relative  to  dollars,  new pence 
relative to pounds, and so forth - are there any mixed radix currencies left in the world?). Since 
the instructions on the machine don't care about scale (number of decimal places), the compiler 
has to keep track of scale information and make sure it is handled correctly for all operations. 
(You could conceivably use floating point notation, but this has other characteristics which make 
it less suitable for business calculations). Now suppose a component receives an IP and tries to 
access  a  currency  field  in  it  based  on  its  compiled-in  knowledge  of  the  IP's  layout.  If  the 
compiled code has been told that the field has 2 places of decimals, that's what the component 
will "see". So we can now do arithmetic with the number, display it in the right format (if we 
know what national currency we are dealing with), and so forth. But note that the layout of the IP 
is only defined in the code - the code cannot tell where the fields really start and stop. So we have 
a sort of mutual dependency: the only definition of the data is in the code, and the code is tightly 
tied to the format of the data. If you want to decouple the two, you have to have a separate 
description of the data which various routines can interrogate, which can be attached to the data, 
independent of what routines are going to work with that data. If this is powerful enough, it will 
also let you access older forms of your data, say, on an old file (the "legacy data" problem). 

Apart from format information, you also have to identify what type of data a field contains. For 
instance, the hexadecimal value 
019920131F

might be a balance in a savings account ($199,201.31), but it could also be a date (31st January, 
1992).  Depending  on  which  it  is,  we  will  want  to  perform very  different  operations  on  it. 
Conversely  a  function  like  "display",  which  applies  to  both  data  types,  will  result  in  very 
different results: 
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$199,201.31

versus 
31st January, 1992

Our traditional HLLs will see both data types as FIXED DECIMAL (or COMPUTATIONAL-3). 
Again, only the program knows which kind of data is in the field (by using the right operations). 
There is also the issue of which representation is being used. We have all run into the problem of 
not  knowing  whether  01021992  is  January  2  (American  convention)  or  February  1  (British 
convention). So we have to record somewhere which digits represent the day, which the month 
and which the year. Thus a complete description of our field has what we might call "base type" 
(signed packed decimal), length (and perhaps scale), domain and representation. Some systems 
use a standard representation for "internal" data, or at least a format which is less variable than 
"external" formats, but the "data about data" (metadata) items which I have just described are 
pretty  basic.  (Base  type  could  be  treated  logically  as  part  of  the  more  general  domain 
information, but it turns out to be useful for designing such functions as "dumb" print processes). 
In some systems, domain is referred to as "logical type", and representation as "physical type". 

Let us now look at another example of the pitfalls of programs not knowing what kind of data 
they are working with. Suppose that you have coded the following PL/I statement in a program 
by mistake: 
NET_PAY = GROSS_PAY * TAX;

The compiler  isn't  going to hesitate for a microsecond. It  will  blithely multiply two decimal 
values together to give another decimal value (assuming this is how these fields are defined), 
even though the result is perfectly meaningless. Remember: computers do what you tell them, not 
what  you mean! A human,  on the other  hand,  would spot  the error immediately (we hope), 
because we know that you can't multiply currency figures together. The compiler knows that the 
result of multiplying two numbers each with 2 decimal places is a number with 4 decimal places, 
so it will carefully trim off the 2 extra decimal places from the result (maybe even rounding the 
result to the nearest cent). What it can't do is tell us whether the whole operation makes any sense 
in the first place! 

One other (real world) problem with currency figures is that inflation will make them steadily 
larger without increasing their real value. If 11 digits seemed quite enough in 1970, the same sort 
of information may need 13 or 15 digits in 1992. It is disconcerting to have your program report 
that you mislaid exactly a billion dollars (even though it  is usually a good hint about what's 
wrong)! It would be nice if we could avoid building this kind of information into the logic of our 
applications. If we had an external description of a file, we could either use this dynamically at 
run-time, or convert the data into some kind of standard internal format - with lots of room for 
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inflation,  of  course!  The other  place  where  this  affects  our  systems  in  in  screen  and report 
layouts. As we shall see, these are also areas where it makes a lot of sense to hold descriptions 
separately, and interpret them at run-time. What we don't want to do is have to recompile our 
business systems every time some currency amount gets too big for the fields which hold it. 

This is another legacy of the mathematical origins of today's computers - everything is viewed as 
a  mathematical  construct  -  integers,  real  numbers,  vectors,  matrices.  In  real  life,  almost 
everything has a dimension and a unit, e.g. weight, in pounds or kilograms, or distance, in miles 
or kilometres. If you multiply two distances together, you should get area (acres or hectares); 
three distances give volume, in cubic centimetres, bushels or litres. Currency amounts can never 
be multiplied together, although you can add and subtract them. You could also theoretically 
convert currency from dollars to pounds, or francs to marks, but this is a little different as it 
would need access to up-to-date conversion rate tables, and it was recently pointed out to me that 
banks usually like to charge for converting from one currency to another, so that it's not just a 
simple matter of multiplying a currency amount by a conversion factor [although we built just 
such a facility for a recent e-business application]. Dates can't even be added, although you can 
subtract  one date from another.  There is a temptation with dates to just  convert them into a 
canonical form (number of days from a reference date - for instance, Jan. 1, 1800) and then 
assume you can do anything with them. In fact, they remain dates, just represented differently, 
and you still can't add them.... On the other hand, you can do things like ask what day of the 
week a date falls on, what is the date of the following Monday, how many business days there are 
between June 30 and August 10, etc. 

We have used the term "representation" quite a lot so far. Some of the above complexities come 
from confusing what the data is with how it is represented. The data is really a value, drawn from 
a  domain  (defined  as  a  set  of  possible  values).  We  really  shouldn't  care  how  the  data  is 
represented internally - we only care when we have to interface with humans, or a file is coming 
from another system. However, we also have to care every time we interface with current higher 
level languages.  The requirements for interfacing with humans involve even more interesting 
considerations  such as  national  languages  and national  conventions  for  writing  numbers  and 
dates, which should as far as possible be encapsulated within off-the-shelf subroutines. 

Multilingual support is an increasingly important area. Some Asian languages involve double-
byte  coding, which differs from machine to machine,  as well  as from language to language. 
Computer  users  no longer  feel  that  they should have to learn English to use an application, 
although most programmers are still willing to do so! This attitude on the part of programmers 
still sometimes laps over into what they build for their customers, but the more sophisticated ones 
know that we are living in a global market, and that computers have to adapt to people, rather 
than the other way around. In many ways, Canada has been at the forefront of these changes, as it 
is an officially bilingual country, and French Canadians have historically been very insistent, and 
rightly so, that their language be written correctly! 
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If we separate the representation from the content of the data,  we can look at the variety of 
possible  representations  for  any  given  chunk  of  data,  and  consider  how  best  to  support 
conversion from one to another. I once counted 18 different representations of dates in use in our 
shop! These are all inter-convertible, provided you are not missing information (like the century). 
I imagine a lot of retired programmers are going to be called back into harness around the year 
2000, converting programs with 6-digit dates to make them able to cope with the 21st century! 
[Yup! We were!] 

As we said above, the representation of data inside the machine doesn't really concern us. It is of 
interest  when we are talking about  external  uses  of  that  data (being read by humans,  being 
written to or read from data bases, or being processed by HLLs). In some ways, this resembles 
the Object-Oriented view. However, when displaying data (e.g. numeric fields) we found that we 
needed "global" information to control how the data should be presented, such as: 

• currency symbol (whether required and, if so, which) 

• whether currency symbol is floating or fixed 

• separators between groups of three digits (whether required, and, if so, what symbol) 

• separators between integer part and fractional part (what symbol) 

• whether negative values should be indicated and, if so, how (DR, preceding -, following -, 
etc.) 

In addition, these options usually come in "layers": there may be an international standard, a 
national standard, and a company standard, and a particular report may even use one or more 
such representations for the same domain, e.g. amounts with and without separators. Today it is 
not enough just to provide one conversion facility in each direction. Representations occur at the 
boundaries  between  responsibilities  and,  I  believe,  require  sophisticated  multi-level 
parametrization. 

Given that we have to work with existing HLLs [this was pre-Java!], the best we can probably do 
is to describe fields and use smart subroutines as much as possible for all the conversion and 
interfacing logic. This will let us implement all known useful functions, but it cannot prevent 
illegal ones. Object-oriented and some of the newer High Level Languages with strong typing are 
moving in this direction, but the older HLLs do not provide any protection. I suspect we have to 
go further, though, as some form of dimensional anlysis will probably be necessary eventually. 
Hardware designs may emerge which take into account the needs of business users, and when 
this happens, we will not have to have these drastic conversions back and forth between such 
different paradigms. 

So far we have only talked about static descriptions of data. DFDM also had another type of data 
description which proved very useful, which we called "dynamic attributes". Dynamic attributes 
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were also a form of metadata, but were attached to IPs, as well as to their descriptions. The first 
example of this that we came up with was the "null" attribute. We took this term from IBM's 
DB2, in which a column in a table may have the attribute of "may be null". This means that 
individual fields in this column will have an additional bit of information, indicating whether or 
not the particular value is null or not, meaning either "don't know" or "does not apply". Some 
writers feel that these two cases are different, and in fact the latter may be avoided by judicious 
choice  of  entity  classes,  but  the  former  is  certainly  very  useful.  In  DFDM  interactive 
applications, we often used "nullness" to indicate fields which had not been filled in on a panel 
by the end-user. 

The "null" attribute also works well with another dynamic attribute which we also found useful: 
the "modified" attribute. Suppose that an application panel has a number of fields on it, some of 
which do not have values known to the program. It is reasonable to display "null" fields as blank, 
or maybe question-marks. If the user fills one or more fields in, their attributes are changed to 
"modified" and "non-null". This information can then be used by the application code to provide 
user-responsive logic. We found that this kind of logic often occurred in the type of application 
which is called "decision assist": here you often see screens with a large number of fields and it 
becomes important to know which ones have been modified by the user. 

Many applications encode null as a "default" value, e.g. binary zeros, but there are a number of 
formats which do not have an unused value, e.g. binary, so how do you tell whether you have 
zero eggs, or an unknown number? Does a blank street name and number in an address mean that 
we don't know the house-owner's full address, or that she lives in a rural community, where the 
mailman knows everyone by name? Also, we saw no advantage to confusing the idea of null and 
default - what is an appropriate default number of eggs? 

Where DB2 has specific handling for the "nullness" attribute only, DFDM generalized this idea 
to allow you to attach any kind of dynamic attribute data to any field of any IP, e.g. "null" and 
"modified", but also "colour", "error number", etc. Since we felt we couldn't predict what kinds 
of dynamic attribute data we might want to attach to the fields of an IP, we built a very general 
mechanism, driven by its own descriptor (called, naturally, a Dynamic Attribute Descriptor or 
DAD). It allowed any number of attributes to be attached to each field and also to the IP as a 
whole. Thus, we had a "modified" attribute on each field, but, for performance reasons, we had a 
"modified" attribute on the IP as a whole, which was set on if any fields were modified. 

"Null" and "modified" are of course Boolean, but we allowed binary or even character dynamic 
attributes.  One  character-type  dynamic  attribute  which  we  found  very  useful  for  interactive 
applications was "error code". Suppose an editing routine discovered that a numeric field had 
been entered by the user incorrectly: it would then tag that field with the error code indicating 
"invalid  numeric  value".  Any  number  of  fields  could  be  tagged  in  this  way.  When  the  IP 
containing the screen data was redisplayed, the display component would automatically change 
all the erroneous fields to some distinctive colour (in our case yellow), position the cursor under 
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the first one and put the corresponding error message in the message field of the screen. Without 
leaving the component (under IBM's ISPF environment), the user could then cycle through all the 
error fields, with the correct error message being displayed each time. This was really one of the 
friendliest  applications I have ever used, and it was all  managed by one reusable component 
which invoked ISPF services (under IBM's IMS you can do the same thing but it would probably 
take a set of components working together). 

Some writers have objected to the "null" attribute on the grounds that it  introduces 3-valued 
logic:  yes,  no  and  don't  know.  Our  experience  was  that,  in  practice,  it  never  caused  any 
confusion,  and  in  fact  significantly  reduced  the  complexity  of  the  design  of  our  end  user 
interfaces. 

A last point has been suggested by our study of Object-Oriented Programming: IP types are often 
related in a superclass-subclass relationship. This comes up frequently in file handling: one may 
know that one is dealing with, say, cars, but not know until a record is read what kind of car it is. 
It would be very nice to be able to attach a "car" descriptor to each record as it is read in, and 
then "move down" the class hierarchy for a given record, based on some indicator in the record. 
This is in turn related to the question of compatibility of descriptors: what changes are allowed 
between descriptors? It seems reasonable to be able to change a generic car into a Volkswagen as 
one gains more information about it, but not a car into, say, a beetle [note - this is similar to the 
OO class/superclass relationship, except that it is not acceptable to have to modify code as new 
models of car are produced]. In the later versions of DFDM we decided that IP lengths should be 
completely specified by IP type - i.e. if you created an IP with a given type, the length would be 
obtained from the type  descriptor,  and couldn't  be changed.  The question then arises:  if  you 
change a car into a Pontiac (move from superclass to subclass), does the IP become longer, or 
does an "unstructured" portion of the IP become structured? Let's leave this as an exercise for the 
reader! 
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Up to this point, I have been talking about single IPs travelling through networks, like cars and 
buses in a system of highways. I have talked about how streams of IPs can be treated as higher-
level entities, and how these can in turn be given more complex structures by the use of "bracket" 
IPs. I hope I have shown that, using these concepts, quite complex applications can be handled in 
a straightforward manner. 

However, what if we want to build more complex structures and move them through the network 
as single units? Streams take time to cross a connection, and you may want a whole data structure 
to be sent or received at a single moment in time. Since, as we said before, only the handles 
travel through the net, it is just as easy for an IP containing one bit of data to be transferred from 
process to process as one containing a megabyte, so why not allow complex structures to move 
as a unit? It turned out that there was a natural analogue to this idea in real life (which always 
tends to reassure us that we are on the right track!). We mentioned before the idea that IPs are 
like memos - you can dispose of one in one of three ways: you can forward it (send), discard it 
(drop), or keep it (using the various methods of holding onto IPs, e.g. stacking, saving on disk, 
etc.). Well, of course there is a fourth thing you can do with a memo (no, not wad it up and throw 
it at a neighbour) - clip it to another piece of paper, and then do one of the previous three things 
with the resulting composite memo. Make that four things, actually,  since you could clip the 
composite memo to another piece of paper, or to another composite memo, and so on. 

Just as the composite memo can be sent or received as a unit, so the structure of linked IPs, called 
a tree, can be sent or received as a single object. Once a process has received the tree, it can 
either  "walk"  it  (move  from  IP  to  IP  across  the  connecting  links),  completely  or  partially 
disassemble it, or destroy it. For instance, the receiver might walk the tree looking for a particular 
kind of IP, and, for each one it finds, it could unlink it and dispose of it in one of the standard 
ways. The following diagram shows two processes, one assembling trees and one disassembling 
them again: 
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Figure 12.1

A converts a series of three IPs of different types and sizes into a tree of IPs, and B disassembles 
the trees and outputs the component IPs (in a different order). 

In all implementations of this concept so far, no node could descend from more than one parent 
node, and we did not allow any loops - much like a real live tree! I do not believe we lost much 
expressive power by doing so. The main reason for doing this is to allow FBP's ownership and 
disposal rules for IPs to work. 

You will probably have realized that we don't need any special mechanisms as long as the tree is 
assembled and disassembled within  one activation  of  one process  (activation  is  described in 
detail in the chapter on Scheduling Rules). In fact you could read in a set of IPs and build an 
array of pointers for sorting, say - this is in fact how a number of components work. It is only 
when a tree has to be passed from one activation to another, or from one process to another, that 
the IP disposition rules have to be taken into account.  Thus, in the picture above, process  A 
receives (or creates) three IPs, assembles them into a single tree of 3 IPs and sends it out - in this 
case  A starts with an "owned IP count" of 3, and reduces it to 0 by attaching 2 IPs to the root 
(count is now 1) and then sending the tree as a whole out (count of 1 goes to 0). B receives one IP 
(count goes from 0 to 1), and detaches the attached IPs (count goes from 1 to 3). These detached 
IPs must then of course be disposed of by the normal rules. If we allowed any violations of the 
above rules about tree shape, we wouldn't be able to map so easily between trees and streams. 

In one application we had a striking example of how useful trees can be in the FBP environment: 
in a batch banking application, bank accounts were represented by complex sequential structures 
on tape. Each account record consisted of an account header, followed by a variable number of 
different trailer records belonging to a large number of different types, e.g. stops, holds, back 
items, etc. The problem was that, most of the time one could just process these sequentially, but 
sometimes processing later in the stream resulted in changes which should be reflected earlier in 
the stream. For example, an interest calculation, triggered by a particular type of trailer record, 
might require the account balance in the header record to be updated. You could always hold on 
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to the header and put it out later, but then it would have to collated back into its correct position. 
And anyway there was quite a lot of this "direct" access going on, including adds and deletes of 
trailer  records.  Using conventional  programming,  this application became fiendishly complex 
because all the logic had to be coordinated from a timing point of view, and there were timing 
conflicts between when things were required and when they became available! (We know this 
because originally it was coded using conventional logic, and it was very complex!) We were 
also  talking  about  large  volumes  of  these  structures  -  we  had  to  be  able  to  process  about 
5,000,000 every  night.  When we did  this  application  using  FBP,  we realized  that  we  could 
implement this application very simply and naturally by converting each sequential record into a 
tree structure. Once the tree had been built, "direct access" type processing could jump from one 
IP type to another within the tree structure, add or delete IPs, etc., and then the whole thing could 
be converted back to linear form when we were finished. This solution turned out to be simple to 
understand, easy to code and easy to maintain. 

Now let's draw a picture of a simple tree of four IPs: 

  
Figure 12.2

The top box represents the "root" IP, and all  the other IPs are descended from it directly or 
indirectly.  In  the  above  diagram  (mixing  our  metaphors  a  bit):  
  

• X is the root 

• Y and W are the daughters of X 
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• Z is the daughter of Y 

• Z and W are leaves (terminal IPs) 

• Y is a non-terminal IP 

AMPS and the earlier versions of DFDM took the approach that an attached IP required a pointer 
field to be specified as part of the mother's data. This meant that a tree structure could only be 
traversed  using  languages  which  supported  pointers,  e.g.  PL/I,  C,  etc.,  but  it  did  have  the 
advantage  that,  using  these  languages,  we  did  not  have  to  have  any  explicit  tree  traversal 
services.  In  fact,  we  only  needed  an  "attach"  service  and  a  "detach"  service.  The  more 
fundamental problem was that the layout of a given IP had to allow for the maximum number of 
children that it might have - thus, in the above diagram, X would have to provide (at least) two 
pointers, and Y one. Schematically (with the pointers shown as 'x's): 

  
Figure 12.3

However, if Y and W could be conceptualized as a single list (rather than two different kinds of 
relationships) - say an employee's children, you could build "glue" IPs and use them to look after 
the linkage. The above diagram would then become: 
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Figure 12.4

Along these lines, this simple mechanism lets you build a wide variety of structures by creating 
special IP types which contain various arrangements of pointers. For example, you could build a 
chain by just adding one pointer field to each IP in the chain, which can be used for the successor 
IP if there is one. You could build LISP-like lists by having "car" and "cdr" pointers on each IP, 
or even only on certain reserved IP types ("glue"). My colleague Charles Douglas came up with 
the neat analogy that, when you use a paper clip to attach two memos together, the paper clip 
takes up some room on the paper! 

For the Japanese DFDM product, our group felt that you should not have to preplan all the list 
structures an IP might have attached to it. For instance, an employee might have lists attached to 
him or her showing children, courses attended, departments worked for, salary history, etc., and it 
would very nice if this information could be added incrementally, without having to change the 
descriptions of participating IPs. We therefore introduced the idea of named chains, any number 
of which could be added to an IP, without that IP requiring any changes to its description. An 
employee  IP  could  for  instance  have  the  following  chains  attached  to  it:  CHILDREN,  
SALARY_HIST, COURSES, etc. We then of course needed to provide traversal services, and we 
in fact built some fairly powerful services, e.g. add an IP to a named chain (it is created if it does 
not yet exist), get next chain (so you could walk the chains without knowing their names), get the 
first IP of a named chain, get next IP in a chain, detach an IP from a chain, and so forth. You 
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could attach a chain to an IP, or an IP to a chain, but not a chain to a chain, or an IP to an IP. 
These trees thus had a less uniform structure (chains alternating with data IPs), but we felt that 
this still  provided a powerful  paradigm, and a less "programmer-dependent" approach to tree 
manipulation  and traversal.  An employee  IP  with one  child,  Linda,  and who has  taken  two 
courses might look like this: 
         

Figure 12.5

Along the same lines as having to dispose of IPs explicitly, we had to put certain constraints on 
how trees  can  be  disassembled.  This  is  hinted  at  above when we talked  about  "direct"  and 
"indirect" descent.  The root is  owned directly by whichever process has just  received it.  IPs 
which are chained to that root are therefore owned indirectly by the same process (they are not 
owned directly by anyone, except possibly the root IP). You can only send or drop an IP you own 
directly - you have to detach a chained IP first, then send it or drop it. A process can however 
chain another IP (which it must own directly) onto an IP which it only owns indirectly, but that's 
the only service it can reference it with, apart from looking at it! We also added logic to check 
that a process did not try to chain a root IP onto one of its own descendants - that would have 
been allowed by the other rules, but would result in a closed loop! 

If the above sounds complicated, try this analogy: suppose you have just cut down a tree, and you 
want to dispose of it. It seems reasonable that, before you burn a branch, you should cut it off 
first. We could arrange that burning a branch without cutting it off first would "cauterize" the 
point of attachment, but it seems that this would add unnecessary complexity. Conversely, we 
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will  allow you to add leaves and branches to the tree,  but only if  they are not connected to 
another one! Also, you are not allowed to attach things to a tree in such a way that part of the tree 
becomes a closed loop! 

One  other  point  about  trees  is  that  hierarchic  tree  structures,  no  matter  how  they  are 
implemented, can easily be converted into nested substreams like the ones described in Chapter 
11. For instance, the tree shown in Figure 12.2 can be "linearized" as follows: 
<X <Y Z> W>
Figure 12.6

where the convention is that the IP following a left bracket is the "mother" of the other IPs at the 
same level of bracket nesting. This kind of transformation will be familiar to LISP users. In fact 
we have just shown a LISP "list of lists". 

In the "chain" implementation described above, we would have to capture chain identifiers, so we 
can just add chain information to the left brackets, as we did in Chapter 9. Thus the tree shown in 
Figure 12.5 might look as follows after linearization (as in earlier chapters, the "group name" is 
shown as the data part of open and close bracket IPs): 
IP type           data
<               employees 
employee        George
<               children
child           Linda
>               children
<               courses
course          French
course          COBOL
>               courses
>               employees
Figure 12.7

This can then easily be converted back into tree format if desired. It also of course corresponds 
quite well to various data base approaches: "children" and "courses" could be different segment 
types  in an IBM DL/I  data base.  In IBM's  DB2 we could make "employee",  "children" and 
"courses" different tables, where "employee" is the primary key of the "employee" table, and a 
foreign key of the other two. [Of course this maps perfectly onto XML!] 

One last point: although we have stated several times our belief that IPs should be disposed of 
explicitly, it turns out to be very useful to be able to discard a whole tree at a time. The tree 
therefore has to have enough internal  "scaffolding" to allow the 'drop'  service to find all  the 
chains and attached IPs and discard them. The later versions of DFDM needed this anyway, so 
that they could provide services like 'locate next chain',  but this ability to drop a whole tree 
turned out to be important even when we had no traversal services. Although at first it seemed 
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that applications would always know enough about the tree structure to do the job themselves, we 
developed more and more generic components which understood about trees generally, but not 
about  specific  tree  structures.  This  facility  perhaps  most  closely  resembles  the  "garbage 
collection" facility of object-oriented and list-oriented languages. 
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So far, we have talked about processes running asynchronously, but have not discussed how FBP 
software manages this feat. This is a key concept in FBP and we need to understand it thoroughly 
if we are to design reliable structures, and debug them once they have been built! Although this 
subject may appear somewhat forbidding, you will need to grasp it thoroughly to understand how 
this kind of software works. After a bit it will recede into the background, and you will only need 
to work through it consciously when you are doing something complex or something unexpected 
happens. Of course you are at liberty to skip this chapter, but, if you do, you will probably find 
some of the later chapters a little obscure! 

Let us start by looking at the following component pseudo-code (from a previous chapter): 
        receive from IN using a
        do while receive has not reached end of data
            if c is true
                send a to OUT
            else
                drop a
            endif
            receive from IN using a
        enddo

You will be able to see that the job of this component is to receive a stream of IPs and either send 
them on or destroy them, depending on some criterion. As we said above, this code must be run 
as a separate process in our application. We will use the term "component" when talking about 
the code; "process" when talking about a particular use of that code. 

Before, we were looking at processes and components strictly from a functional point of view. 
Now instead let's look at a component as a piece of code. Clearly it is well-structured: it has a 
single entry point and a single exit (after the "enddo"). Once it gains control, it performs logic 
and calls subroutines until its input stream is exhausted ("end of data" on IN). It is therefore a 
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well-formed  subroutine.  Subroutines  have  to  be  called  by  another  routine  (or  by  the 
environment), and at a particular point in time. So....  what calls our Selector component, and 
when? The what is easy: the Selector component is called by the software which implements 
FBP, usually referred to as the "scheduler". The when is somewhat more complicated: the answer 
is that a component is called as soon as possible after a data IP arrives at one of its input ports, or 
just as soon as possible if there are no input ports. 

"As soon as possible" means that we do not guarantee that a process will start as soon as there is 
data for it to work on - the CPU may be busy doing other things. Normally this isn't a problem - 
we want to be sure that our process has data to work on, not the reverse! If we really needed very 
high responsiveness, we would have to add a priority scheme to our FBP software. So far, the 
only implementation of the FBP concepts that I am aware of that implemented such a priority 
scheme was a system written in Japan to control railway electric substations (Suzuki et al. 1985). 
This software built on the concepts described in my Systems Journal article, and extended it to 
provide shared high-performance facilities. None of the implementations I have been involved 
with have needed this kind of facility. 

The  other  possible  start  condition  is  what  one  would  expect  if  the  process  has  no  input 
connections. In this case, one expects the process to be "self-starting". Another way of looking at 
this is that a process with at least one input connection is delayed until the first data IP arrives. If 
there are no input connections, the process is not delayed. Again, the process will start some time 
after program start time when the CPU is available. 

Note that THREADS Initial Information Packets (IIPs) do not count as input connections for the 
purposes of process scheduling - when a process starts is determined by the presence or absence 
of connections with upstream processes. IIPs are purely passive, and are only "noticed" by the 
process when it does a receive on an IIP port element. 

Now we have started our process  -  this  is  called "activation",  and the process is  said to  be 
"active". When it gives up control, by executing its "end" statement, or by explicitly doing a 
RETURN, GOBACK, or the equivalent, it "deactivates", and its state becomes "inactive". 

Now remember that our component kept control by looping until end of data. Now suppose our 
component doesn't loop back, but instead just deactivates once an IP has been processed. The 
resulting pseudo-code might look like this: 
        receive from IN using a
        if c is true
            send a to OUT
        else
            drop a
        endif

We talked about this kind of component in Chapter 9. They are called "non-loopers". The logic 
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of non-loopers behaves a little differently from the preceding version - instead of going back to 
receive  another  IP,  it  ends  (deactivates)  after  the  "endif".  A consequence of  this  is  that  the 
process's working storage only exists from activation to deactivation. This means that it cannot 
carry ongoing data values across multiple IPs, but, as we saw in Chapter 9, the stack can be used 
for this purpose. A non-looper becomes "inactive" after each IP. 

What happens now if another data IP arrives at the process's input port? The process is activated 
again to process the incoming IP, and this will keep happening until the input data stream is 
exhausted. The process is activated as many times as there are input IPs. The decision as to when 
to deactivate is made within the logic of the component - it is quite possible to have a "partial 
looper" which decides to deactivate itself after every five IPs, for example, or on recognizing a 
particular  type  of  IP.  This  "looping"  characteristic  of  a  component  is  referred  to  as  its 
"periodicity". 

Let us consider an inactive (or not yet initiated) process with two input ports: data arrives at one 
of the ports, so the process is activated. The process in question had better do a receive of the 
activating IP before deactivating - otherwise it will just be reactivated. As long as it does not 
consume the IP, this will keep happening! If, during testing, your program just hangs, this may be 
what is going on - of course, it's easy enough to detect once you switch tracing on, as you will see 
something like this: 
  Process_A Activated 
  . 
  . 
  Process_A Deactivated with retcode ... 
  Process_A Activated 
  . 
  . 
  Process_A Deactivated with retcode ... 
  Process_A Activated 
  . 
  . 
  Process_A Deactivated with retcode ... 
  Process_A Activated 
  . 

and so on indefinitely! 

Our group discussed the possibility of putting checks into the scheduling logic to detect this kind 
of thing, but we never reached a consensus on what to do about it, because there are situations 
where  this  may  be  desirable  behaviour  -  as  long  as  the  activating  IP  does  get  consumed 
eventually. We did, however, coin a really horrible piece of jargon: such a component might be 
called a "pathological non-depleter" (you figure it out)! And besides, it's really not that hard to 
debug... 
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Returning to IIPs, we have said that in THREADS processes read in IIPs by doing a receive on 
their port. If they do a receive again from the same port within the lifetime of the process, they 
get an "end of data" indication. This means that a component can receive an IIP exactly once 
during the lifetime of the process (from invocation to termination). If a component needs to hold 
onto the IIP across multiple activations, it can use the stack (described in Concepts) to hold the 
IIP, either in the original form in which it was received or in a processed form. 

So far, we have introduced two basic process states: "active" and "inactive". We now need terms 
for the very first activation and the very last deactivation of a process: these are called "initiation" 
and "termination", respectively. Before initiation, the process doesn't really exist yet for the FBP 
software, so initiation is important as the scheduler has to perform various kinds of initialization 
logic.  Termination is  important  because the scheduler  must know enough not  to activate the 
process  again.  Termination  of  a  process  also affects  all  of  its  downstream processes,  as this 
determines  whether  they  in  turn  are  terminated  (a  process  only  terminates  when  all  of  its 
upstream processes have terminated). 

Processes may thus be thought of as simple machines which can be in one of a small number of 
different "run states". The four main run states are the ones we have just described: 

• not yet initiated 

• terminated 

• active 

• inactive 

"Not yet initiated" is self-explanatory - it means that the process has never received control. All 
processes start off in this state at the beginning of a job step or transaction. 

"Terminated" means that the process will never receive control again. This can only happen if all 
of a process's upstream connections have been closed - each of the input connections of a process 
can be closed explicitly by that process, or it will be closed automatically if all of the processes 
feeding it have terminated. 

The underlying idea here is that a process only becomes terminated if it can never be activated 
again. It can never be activated again if there is nowhere for more data IPs to come from. Note 
that, while a component's logic decides when to deactivate, termination is controlled by factors 
outside of the process. There is one exception to this, however: a component can decide not to be 
reactivated  again,  e.g.  as  a  result  of  some  error  condition.  It  does  this  in  both  DFDM and 
THREADS by returning a particular return code value (or higher) to the scheduler. [This has not 
been implemented in JavaFBP or C#FBP.]  Earlier versions of FBP allowed one component to 
bring down the whole network, but in recent years we felt that this was not conceptually sound 
(parts of the network could be on different computers), so now a process can only terminate itself 
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- no process can terminate another.  There is a different way that a component  can decide to 
terminate itself, and that is by closing its input ports. Some processes don't have input ports, but, 
for those that do, this has the same effect as terminating with a high return code. 

A simple example will  show why this needed: suppose you have a Reader process which is 
reading a file of a few million records, and a downstream process crashes: under normal FBP 
rules, the Reader keeps reading all the records, and sending them to its output port. As each send 
finds the output port closed, the Reader has to drop the undeliverable IP. So it has to read all the 
records, requiring a few million each of "create", "send" and "drop". Instead, it is much better to 
bring the Reader down as quickly as possible, so it can stop tying up time and resources. Readers 
are therefore normally coded so that, the first time they find the output port closed, they just 
deactivate with a high return code. This takes care of any necessary housekeeping, and eventually 
the whole network can close down. By the way, this practice makes sense for all components, not 
just  long-running  ones  -  it  is  good  programming  style  for  components  always  to  test  for 
unsuccessful sends. If this condition is detected, they must decide whether to continue executing, 
or whether to just close down - this usually depends on whether the output port is related to the 
main function of the component, or whether it is optional. 

When all the processes in a network have terminated, the network itself terminates. Now, it is 
possible for one process to block another process so that the network as a whole cannot come 
down gracefully. This is called a "deadlock" in FBP and is described in some detail in a later 
chapter. This is however a design problem, and can always be prevented by proper design. If the 
network  is  properly  designed,  it  will  terminate  normally  when  all  of  its  processes  have 
terminated, and all resources will then be freed up. 

In Chapter 7, we talked about various kinds of composite components. DFDM's dynamic subnets 
and the composite components of FPE had the ability to revive terminated processes. In that 
chapter we explained why this ability is necessary, and we shall run into it again in Chapter 20, 
when we talk about Checkpointing. Revived processes essentially go from the "terminated" state 
back to the "not yet initiated" state. 

If we had a separate CPU for each process, the above-mentioned four states would be enough, 
although a component waiting to send to a full connection, waiting to receive from an empty one, 
or waiting on an external event, would have to spin waiting for the desired condition.  To avoid 
this, we have introduced a suspended state, so we can split the active state into "normal" and 
"suspended", resulting in five states: 

• not yet initiated 

• terminated 

• active normal 

• active suspended 
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• inactive 

At this point I would like to stress the point that a given process can only be in one of these states 
at a time, and, when suspended, a process can only be waiting for a single event. While you will 
occasionally feel that this is too much of a restriction, we deliberately made this decision in order 
to make an FBP system easier to visualize and work with. At various times in the development of 
FBP systems, we were tempted to allow a process to wait on more than one event at a time, but 
we always found a way round it, and never needed to add this ability to our model. Suppose you 
want to have a process, P, which will be triggered by a timer click or by an IP arriving at an input 
port,  whichever comes first:  the rule about processes having a single state suggests that  you 
might need two processes, one waiting on each event type. One possible solution, however, is to 
have one process send out an IP on each timer click, and then merge its output stream with the 
IPs  arriving  from another  source,  resulting  in  a  single  stream which  is  then  fed  to  P.  The 
overhead of the extra processes is outweighed in our experience by the reduction in complexity 
of  the  mental  model  and  the  consequent  reduction  in  software  complexity  and  improved 
performance. Here is a picture of the resulting network: 

 
Figure 13.1

Up to now, we have assumed that all ports are named. Not all ports need to be known to the 
components they are attached to: sometimes it is desirable to be able to specify connections in the 
network  which  the  processes  themselves  don't  know  about.  These  are  especially  useful  for 
introducing timing constraints into an application without having to add logic to the components 
involved. In DFDM we used port 0 for various functions of this kind, but this idea has been 
generalized into what we call automatic ports, to reflect the idea that their functioning is not 
under the component's control. 

- 146 -



Chap. XIII: Scheduling Rules

Consider two processes, one writing a file and one reading it. You, the network designer, want to 
interlock the two components so that the reader cannot start until the writer finishes. To do this, 
you figure that if you connect an input port to the reader,  the reader will be prevented from 
starting until  an IP arrives  on that  port  (by the above scheduling rules).  On the other  hand, 
readers don't usually have input ports, and if you add one, the reader will have to have some 
additional code to dispose of incoming IPs, looking something like this: 
        if DELAY port connected
            receive from DELAY port     
            discard received IP
        endif

Similarly, you would also have to add code to the Writer at termination time to send an "I'm 
finished" IP to an appropriate output port. 

Now, to avoid having to add seldom used code (to put out and receive these special signals) to 
every component in the entire system, the software should provide two optional ports for each 
process which the implementing component doesn't know about: an automatic input port and an 
automatic output port. If the automatic output port is connected, the FBP scheduler closes it at 
termination time. 

The  automatic  input  works  like  this:  if  there  is  an  automatic  input  port  connected,  process 
activation is delayed until an IP is received on that port, or until the port is closed.  This assumes 
that no data has arrived at another input port. 

Here is a picture of the Writer/Reader situation: 

- 147 -



Chap. XIII: Scheduling Rules

Figure 13.2

where the solid line indicates a connection between W's automatic output port and R's automatic 
input  port.  The solid circles  at  each end of  the line  indicate  automatic  ports.  Since  W only 
terminates when it has written the entire file, we can use the automatic output signal to prevent 
the Reader from starting too early.  An automatic port need not only be connected to another 
automatic port - it can always be connected to a regular port, or vice versa. Any IP that has been 
received (by the scheduler) at an automatic input port is automatically discarded (better not use 
any important data for this job, unless you have taken a copy)! 

Here is a network where the automatic output signal gates an IP from another process. Assuming 
that C receives from I1 before it receives from I2, then C will not process the input at I2 until A 
has terminated. If we made I1 automatic, we would have essentially the same effect, except that 
C would not have to do a receive, but conversely, it would not have the option of processing the 
input at I2 first. 

  

Figure 13.3

There is another situation which is similar to the automatic output port:  all output ports of a 
component, whether the component "knows" about them or not, will present end of data when 
that component terminates. This can also be used to defer events until one or more processes 
have terminated (see Chapter 20). [This was true in THREADS - this situation is not allowed in 
JavaFBP or C#FBP.]
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One last topic we should mention is the problem of the "null" stream: in DFDM a component 
receiving a  null  stream (a stream with no data  IPs)  was invoked anyway.  This  logic,  while 
perhaps consistent with the regular scheduling rules, tended to increase run-time costs. In one 
interactive application, we found that 2/3 of all the processes were error handlers, and so should 
really never get fired up if no errors occurred. If they were fired up, as in the normal DFDM case, 
the added overhead became quite expensive - especially since most of the processes were written 
in HLLs, so the run-time environment of every process had to be initialized separately. 

We therefore introduced [in the next implementation] the ability to change this behaviour for a 
whole  network.  But  then  we  had  the  problem  of  Writers  and  Counters.  Consider  a  Writer 
component writing a disk file: when it receives a null stream, you want the Writer to at least open 
and close its output file, resulting in an empty data set. If it doesn't do this, nothing gets changed 
on the disk, and another job reading that file would see the data from the previous run! Counter 
components which generate a count IP at end of data have a similar problem - how can they 
generate  a  count  of  zero  if  they are  never  invoked?  So then we had to  add the  concept  of 
components which are "end of stream sensitive" (components which behave differently in these 
two modes - most do not need to), which could in turn be overridden by a "suppress end of 
stream processing" indication in the network (in case you really didn't want this special logic for 
a particular run).... Old systems which have been in use for a number of years tend to develop 
layers upon layers of incrustations, rather like barnacles on a boat.... 

THREADS defaults the other way from DFDM, but for the cases where you want a process 
receiving a null stream to be activated, THREADS uses the concept of "must run at least once". 
This is an attribute of the component, not of the process, and means simply that the component 
must  be  activated  at  least  once  during  each  run  of  the  network.  So  Writer  and  Counter 
components  can  do  their  thing,  even  when receiving  a  null  data  stream.  [This  seems much 
simpler! The Java and C# implementations also work this way.] 
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All of the network shapes we have encountered so far have been of the kind we call "batch", and 
have generally had a left-to-right flow, with IPs being created on the lefthand side and disposed 
of on the right of the network. Sometimes we need to use a different kind of topology, which is a 
loop-type network.  Several  of  the  later  chapters  contain  examples  of  this  topology,  so  it  is 
worthwhile  spending some time talking about  this  type  of network at  a general  level.  Many 
networks will in fact be a mixture of the two types, but, once you understand the underlying 
principles, they won't present any problems. 

Here is a very simple example of a loop-type network: 

 
Figure 14.1

The first question we need to answer about this type of network is: how does it get started? You 
may remember that the only processes which get started automatically are those with no input 
connections (IIPs don't count). If you look at Figure 14.1, you will see that there are no processes 
which have no input connections [double negative intended!]! B has an input connection coming 
from  A, but  A has an input connection coming from  B! Although on occasion we have been 
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tempted to relax the restriction about which processes can start, the simplest thing to do is just to 
add an extra process which has no input connections and then use it to start A or B. So the picture 
now looks like this: 

Figure 14.2

where K is the starter ("kicker") process, that emits a single packet containing a blank. K can be 
connected to either A or B as the logic demands. 

Now we have started our loop-type networks, not surprisingly, there is another problem: how do 
they close down? The problem here is in the definition of close-down of a process - a process 
closes down on the next deactivation after all of its upstream processes have closed down. In the 
above diagram, since  A is  upstream of  B,  but  B is  also upstream of  A,  we get  a  "catch-22" 
situation: A cannot close down because B cannot close down until A closes down, and so on. The 
solution is to provide a special service which makes a process look to its neighbours as if it has 
closed down. One of the processes involved must then decide to close down and will use this 
service to notify the other processes. In the batch situation, closedown of the network as a whole 
was typically initiated by readers closing down (because they had finished reading their files or 
had run into  problems).  In  loop-type  networks,  one of  the  processes  -  usually  one  which is 
interacting with a user - has to decide that no more data is going to arrive, so it closes down. 

The service which tells a process's neighbours that it has closed down is one we have mentioned 
casually before: "close port". FBP lets a component close an input port or close an output port. 
The function of this service is to close ports before they would normally be closed (this would 
normally happen automatically at process close-down time, but there are cases, like this one, 
where we just can't wait that long). A process closing an output port has the same effect on its 
downstream processes as if the process had terminated. A process closing an input port has the 
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same effect on its upstream processes; also if all of its input ports are now closed, it automatically 
terminates. 

So, to close down the network, A or B in Figure 14.2 simply closes its input or output port - it 
doesn't  matter  which  one.  Suppose  B closes  its  input  port  and  ends  execution:  it  will  now 
terminate [because no more input data can now arrive].  B is in fact  A's upstream process, so A 
will also be able to close down, thus bringing down the whole network (the "kicker" process will 
have closed down long ago). 

Now that we know how to make loop-type networks start and stop, why would we want to use 
them? This usually has to do with synchronization, which we will also be talking about in a later 
chapter. In a regular left-to-right network, the left side of the network will be processing the last 
IPs, while earlier IPs are being processed further to the right in the network. This asynchronism 
gives this technique a lot of its power, but there are situations where you have to coordinate some 
processing with a specific external event, or make sure that two functions cannot overlap in time. 
One such example is that of an interactive application supporting one user. Here A in the above 
example might be an interactive I/O component and B might be a component to handle the input 
and generate the appropriate output, e.g.: 

Figure 14.3

where INTER controls a screen. In this figure, INTER receives some data from PROC, displays it 
on the screen, waits for some action on the part of the end user, and then sends information back 
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to PROC. If the software infrastructure allows it, waiting for input need only suspend INTER, and 
other processes could be working on their input while INTER is suspended. 

If, on the other hand, this were a left-to-right flow, and PROC were preceded by an input process 
and followed by an output process (without the "back flow"), input and output to and from the 
same screen would no longer be synchronized. You therefore have to synchronize at least one 
component to the pace of the user, so that he or she can act on the data presented on a screen 
before getting the next screen. 

Since the IPs from which a screen is built must fit into the queues of the loop or/and the working 
storage of the processes, we have to make sure there is enough capacity in these queues. One way 
to make sure we don't have to worry is to use the tree structures described in an earlier chapter. A 
tree of IPs can be used to represent the screen data and can be sent around the loop as a unit. 
Alternatively, the screen data can be represented as one or more substreams, and then we just 
have to make sure the total queue capacity is set high enough. 

As we shall see in Chapter 19, where we describe IBM's IMS on-line applications, you also get a 
loop structure there, but with a different purpose. IMS is a queue-driven on-line environment, 
and its Message-Processing Programs (MPPs) keep obtaining transactions from the IMS message 
queue until there are no more for that MPP, or until certain other conditions are met which cause 
the  MPP to  close  down.  Each  time  a  transaction  is  obtained  from the  queue,  IMS takes  a 
syncpoint, so any positioning information from the previous transaction is lost, data bases are 
updated, etc. In FBP, we therefore build MPPs as loops where the next transaction is not read 
from the message queue until the previous one has been fully processed. The diagram would be 
the same as the previous one, except that INTER is replaced by a "transaction getter", as follows: 
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Figure 14.4

If you are familiar with IMS, you will also realize that each time around this loop the program 
will normally be dealing with different users, so, unlike the previous example, you cannot use the 
working storage of the processes to save information relating to one user. 

Obviously  in  both  of  the  above  cases,  PROC is  shorthand  for  a  group  of  processes  which 
collectively process one screenful or transaction. This group of processes will accept data from 
the screen, and send out some kind of signal when they have finished with it. In both cases, it 
doesn't really matter whether the screen output data is routed back to INTER or GETXACT, or put 
out  by  a  different  process,  as  long  as  no  more  input  is  accepted  until  the  output  has  been 
presented to the user.

[Some paragraphs  on subnets  and substream sensitivity  -  including Figure 14.5 -  have been 
dropped as they are described in more detail in Chapters 7 and 20.]

Another use for loop networks is for "explosion" applications, of which the classical example is 
the Bill of Materials explosion, where components of some complex assembly will be "exploded" 
into  subcomponents  progressively  until  they  reach  ones  which  cannot  be  broken  down  any 
further. If you know that the largest possible explosion would not fill up storage, you could use a 
loop of two or more processes with very high capacity queues connecting them (it is dangerous to 
use a loop with only one process as you could land up getting deadlocked). Of course, the IPs for 
composite parts must be removed from the data stream when their subcomponents are added to it, 
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or when they are found not to be further reducible (like nuts and screws),  so eventually the 
looping data stream will go empty. 

This type of logic can also be useful when parsing other kinds of recursive structures, e.g. lists of 
lists or expressions in a language. A colleague, Charles Douglas, used it very effectively in a text 
processing application, where the user needed to be able to name lists of data bases and in turn 
use  those  names  in  other  lists.  He  implemented  this  very  similarly  to  a  Bill  of  Materials 
explosion. His application went through all the lists, progressively exploding them until it got 
down to the actual data base level. Thus suppose, we have the following lists: 
A:  B, C, D, E
B:  D, E, G
D:  E, F
Figure 14.6

Then, if you feed in A, the successive stages of explosion are as follows: 
A
B, C, D, E
D, E, G, C, E, F, E
E, F, E, G, C, E, F, E
Figure 14.7

If the goal is to figure out how many of each atomic object you have, the totals are: 
1 C, 4 E, 2 F, 1 G 
Figure 14.8

If you simply want to list the different atomic objects involved, then you get: 
C, E, F, G 
Figure 14.9

Either way, the simplest technique is to follow the explosion with a Sort, and then either count 
items, or eliminate duplicates. 
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Client/Server

"A complex system which works is invariably found to have evolved from a simple 
system which works", John Gall (1978)

"Systems run better when designed to run downhill. Corollary: Systems aligned with 
human motivational  vectors will  sometimes work. Systems opposing such vectors 
work poorly or not at all", John Gall (1978)

"Loose systems last longer and work better", John Gall (1978)

A colleague of mine, Dave Olson, has been studying the application development process in 
particular, and large organizations in general, and has realized that the budding science of chaos 
has a lot to tell us about what is going on in this kind of complex process and what we can do 
about it. In the study of chaos one frequently runs into feedback loops, and, in our business, just 
as one example, we have all experienced what happens when a project starts to run late. Fred 
Brooks described this kind of thing in his celebrated book, "The Mythical Man-Month" (1975). 
Chaotic systems also are characterized by areas of order and areas of apparent disorder. Dave's 
recent book describes these concepts and also describes how they can be applied to explain and 
handle  many  of  the  problems  we  run  into  in  our  business  (Olson  1993).  In  a  section  on 
techniques  for  reducing  disorder,  he  talks  about  DFDM  and  its  relationship  to  the  Jackson 
Inversion  methodology  (mentioned  elsewhere  in  this  book).  He  later  gives  more  detail  on 
DFDM, and describes how you would approach designing an application with it as follows: 

To use DFDM, you first define the data requirements of the application, defining how the data 
flows and is transformed during the application process. Then you create transform modules for 
the  places  in  the  flow where  data  must  be  merged,  split,  transformed  or  reported.  The  full 
application definition consists of the data definitions and data flows, defined to DFDM, and the 
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transform modules that are invoked by the platform. 

In a personal communication to me, he expands this into the following set of recommendations: 

• View the application in terms of the information that needs to move from place to place. 

• Create transform modules for the places where data must be merged, split, transformed, or 
reported. 

• Separate data definitions from transform code so that transforms can be reusable code. 
Transforms thus care more about what has to be done, not so much about how individual 
pieces of information are represented. 

• Provide  certain  building  block  transforms  that  will  be  needed  by  most  applications, 
including file storage, file retrieval, file copy, printing, user interaction, etc. 

• Build a systems framework so that an application can be defined in terms of its data flows 
and  transforms;  the  framework  handles  scheduling,  concurrency,  and  data  transfers 
between transforms. 

Doesn't sound much like conventional programming, does it? However, viewing an application in 
terms of data and the transforms which apply to it underlies many design methodologies. The 
problem has always been how to get from such a design to a working program. This is the "gap" I 
have referred to above. With FBP, you can move down from the highest level design all the way 
to running code, without having to change your viewpoint. 

The first stage of designing an application is to lay out our processes and the flows between 
them. This is pretty standard Structured Analysis,  and has been written about extensively by 
Wayne Stevens and others. Of course the scope of your application is sometimes not obvious - 
we can draw our network of processes as large or as small as we want. A system is whatever you 
draw a dotted line around. By this I mean that the boundary of any system is determined by an 
arbitrary decision that, for practical purposes, part of the world is going to be considered and part 
is going to be ignored. In the astronomy of our Solar system, we can treat influences from outside 
the Solar system as effectively negligible, and this works fine most of the time, even though 
theoretically  every object  in  the  universe  affects  every other.  You may think that  your  skin 
separates a well-defined "you" from the rest of the universe, but biochemistry teaches us that all 
sorts of molecules are constantly passing in and out through this apparent barrier. Indeed all the 
molecules in our bodies are totally replaced over a period of a few years. This is rather a Zen idea 
- taken to the extreme it says that objects don't have an objective existence (pun intended), but are 
just the way we "chunk" the universe. And we should also be aware of the way the words we use 
affect the way we view the universe. As a linguist, I find a number of B.L. Whorf's examples 
quite striking: in one example (Whorf 1956), he gives a word in one of the Amerindian languages 
that  describes  people  travelling  in  a  canoe,  in  which  there  is  no  identifiable  root  meaning 
"canoe". The canoe is so much an assumed part of their experience that it doesn't have to be 
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named explicitly. 

Thus,  to design systems,  we have to delineate  the system we are going to design.  This  first 
decision is critical, and may not be all that obvious. So consider the context of the system you are 
designing: have well-defined (and not too many) interfaces with the systems outside your chosen 
system. 

You  can  now  lay  out  the  processes  and  flows  of  your  system.  Explode  the  processes 
progressively  until  you  get  down  to  the  level  where  you  start  to  make  use  of  preexisting 
components. In FBP, you will find these starting to affect your design as you get closer to them. 
This is one of the points where FBP design differs from conventional programming, but it should 
not really surprise us as we do not design bridges or houses purely top-down or purely bottom-
up. As I said before, how can you "decompose" the design for a house so that it results in the 
invention of dry-wall? But conversely, you have to know where you're going in order to be able 
to determine whether you're getting closer to it. Ends and means must converge. Design is a self-
conscious process of using existing materials  and ideas or  inventing new ones,  to  achieve a 
desired goal. 

On the way to your goal, like any hiker, you have to be willing and able to change your plans as 
you go. The nice thing about programming is that you can move between a "real" program and its 
simulation very easily, so you can try something and modify it until you're happy with it. In fact, 
with FBP we can realize an old programming dream of being able to grow an application from its 
simulation. You can replace processes by components which just use up 'x' seconds of time, and 
vice versa. 

In programming I believe there should be no strong distinction between a prototype and a real 
program until the real program actually goes into production. If something in the environment or 
in your understanding changes, so that an old assumption is no longer true, you have to be able to 
change your design. While I am very aware that the cost of change goes up the further back you 
go in the development process, you have to know when to cut your losses, and go back and do 
some redesign. If it helps, consider how much harder it is for, say, a surgeon to do this! 

If you combine FBP with iterative development, I believe that you have a very powerful and 
responsive application development technology. You can try different approaches, it's cheap to 
make changes, and when it is time to dot the i's and cross the t's, it is essentially a linear process. 
By way of comparison, I believe that the chief failing of the "waterfall" methodology was that it 
was so awkward to go back that development teams would press forward phase after phase, 
getting deeper and deeper into the swamp as they went, or they would redesign, and pretend they 
were doing development (or even testing!). Here is Dave Olson again: "Programmers know that 
highly detailed linear development processes don't match the way real programming is done, but 
plans and schedules are laid out using the idea, anyway." He goes on to stress that, while there 
are some projects for which the "waterfall" process will work fine, you cannot and should not 
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shoehorn every project into it. 

Apart from the iterative explosion process for networks we have just described (vertical), in FBP 
I have found there is another process which is orthogonal to it. This is the process of cutting up 
networks horizontally, to decide how and where they are going to run. In this process, we assign 
parts of our network to different "engines" or environments. Since FBP systems are designed in 
terms of communicating processes, these processes can run on all sorts of different machines or 
platforms - in fact anywhere that has a communication facility. 

When you think about the ways a flow can be chopped up, remember you can use anything that 
communicates  by  means  of  data,  which  in  data  processing  means  practically  any  piece  of 
hardware or software. I call this process "cleaving". Networks can be cleft (or cloven) in any of 
the following ways (in no particular order and not at all mutually exclusive): 

• multiple computers (hosts, mid-range, PCs or mixture) 

• multiple processors within one computer 

• multiple tasks 

• different geographical sites 

• multiple job steps within a job 

• secondary transactions 

• client/server 

• multiple virtual machines 

• etc. 

All of these have their design considerations, but that's just like the real world, where there are 
many different  processes and they all  communicate in different  ways. Today I can call  up a 
friend by phone, mail him or her a hand-written letter, fax it, communicate by E-mail, send a 
telegram,  or  stick  a  note  in  a  bottle,  throw  it  into  the  Atlantic  and  hope  it  gets  delivered 
eventually! Each one of these has areas where it is stronger or weaker. 

Let us take as our starting point one of the most common network cleaving techniques: multiple 
job steps in a job. Suppose you have decided that your network is going to run as a batch job 
under MVS. Here is a picture of a simple network: 
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Figure 15.1 

Let us suppose that, for whatever reason, we want to run this as multiple job steps of a single 
batch job. Now we know that job steps can only run sequentially. While they can be skipped, 
they cannot be repeated. This means that B and C must be in the same job step. However A and 
D can be split off into different job steps if desired. Suppose we decide to make both A and D 
separate job steps - this will result in 3 job steps, in total. 

We also know how job steps communicate - by data files (yet another kind of data flow). In FBP 
we are free to replace any connection with a sequential file, so we can change the connections 
leading out of A and those leading into D to files. Once we separate two processes into different 
job steps, of course all connections between them must be replaced by files. Each one of these 
will in turn require a Writer and Reader. Using dotted lines to show step boundaries and [X]'s to 
indicate files, our diagram now looks like this: 
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Figure 15.2 

I have shown the Writers and Readers around the files as W's and R's to keep the similarity 
between the two previous figures. These are proper processes even though they are not shown as 
boxes. Steps 1 and 3 thus have 3 processes each; step 2 has 4. 

If we show this picture at the job step level, we see that we could have designed it this way 
earlier in the process, and then exploded it to get the previous figure. 

 

Figure 15.3 

However, it is much better to design a complete application and then cleave it later, as other 
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considerations may affect our decisions on how the network should be split up. (For instance, the 
problem I mentioned in an earlier chapter of not being able to overlap sorts forced many of them 
into separate job steps!)  In fact,  since it  is  so easy to move processes from one job step to 
another, there is no particular point in splitting up our network early - you can just as well leave it 
to the last minute. In conventional programming, moving logic from one job step to another is 
very difficult, due to the drastic change of viewpoint when you move from data flow design to 
control flow implementation, so the decision about what are going to be the job steps has to be 
made very early, and tends to affect the whole implementation process from that point on. 

I'd like to make another point about this rather simple example: in Figure 15.2, you notice that 
communication between process A and process B is managed by two processes and a file. In 
FBP, this is a common pattern whenever any two processes communicate other than via FBP 
connections. Thus a communication line might be "managed" by a VTAM Send process at one 
end, and a VTAM Receive process at the other. I will give a few examples later in this chapter of 
other kinds of communication between networks, and you will see this pattern in all of them. 

A more subtle point is that the transition from Figure 15.1 to Figure 15.2 was made entirely by 
manipulating the network, without having to add any complexity to the underlying software. This 
point is related to the principle of open architectures I talked about in an earlier chapter: our 
experience  is  that  it  is  much  better  to  implement  subsystems  like  file  handling  and 
communications  as  visible  processes  under  the  developer's  control  than to bury them in  the 
software infrastructure. Since the latter is common practice among software developers, all I can 
say is that this preference is based on solid experience. But consider the advantages: Write-file-
Read becomes just one mechanism supporting a particular way of cleaving networks - we could 
have  used  many  others,  and  in  fact  could  change  from  one  to  another  during  project 
development. 

To try to show what happens if we go the other way, consider what would have happened if we 
had  decided  to  have  two  kinds  of  connections:  an  intra-step  connection  and  an  inter-step 
connection. Let's take Figure 15.1 and assign each connection to one of these two categories 
depending on whether it crosses a step boundary or not (we'll assume you do this at the same 
time you divide the network up into job steps). 
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Figure 15.4 

Now, I claim that we have made both the implementation and the mental model more complex, 
without providing any more function to the developer. Not only will the added complexity make 
the system harder to visualize and therefore harder to trouble-shoot, but we may have made some 
useful operating system features inaccessible or only accessible through still more complexity in 
the interface. And if a programmer wants to replace the inter-step connections with, say, a DB2 
data  base,  s/he  is  going  to  have  to  add  extra  processes  anyway,  and  change  the  inter-step 
connections back to intra-step connections.... 

Another way of presenting this discussion is that it is very important, when designing software, 
to decide on its scope. The scope of a given software system obviously depends on the particular 
environment it is running in, but it is sometimes not obvious which of the various constructs of 
that  environment should be the basic  "unit"  of your  software.  In the case of DFDM, it  will 
probably be obvious from all the foregoing descriptions and examples that a DFDM network 
corresponds to one of the following: 

• an MVS job step, 

• an IMS transaction, 

• BMP, 

• batch job, 

• a CMS "program" 
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However, in the early stages of DFDM it was not at all obvious that this was the right decision. 
Even the CMS statement above is somewhat vague because the word "program" is one of the 
most confusing in the whole science of "programming"! Consider Figure 15.4 above - if we had 
implemented DFDM that way, the scope of a DFDM application would have been an MVS job, 
not a job step. There is no counterpart of this in IMS (except perhaps a "conversation"), or in 
CMS, so it would have been harder for programmers to move from one of these environments to 
another. I have always considered our choice of the scope of a network as being one of the keys 
to the usability of DFDM. In THREADS, a network is implemented as an .EXE file, which I 
think is also usually referred to as a "program". 

So a system should have components of well-defined scope, with visible, controllable interfaces 
between them -  in  fact  very much like  FBP itself!  Such systems  (and,  I  believe,  only such 
systems) can then be combined easily in open architectures. 

Let's take another look at Figure 15.2. We could draw a box around each of the patterns shown as 
             ----W [X] R---- 

to make it a process in its own right. This process can run perfectly well within a job step, and in 
fact we have met this pattern before in Chapter 13 (Scheduling Rules), where we drew it like this: 

 

Figure 15.5 

As you will recollect, we used automatic ports to ensure that the reader did not start until the 
writer had finished writing the file. Taken as a whole, this process is rather like a sort without the 
sorting function! It writes a whole data stream out to disk, then reads it back and sends it on. We 
can also state this a bit differently: it keeps accepting IPs, storing them in arrival sequence, until 
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it detects end of data; it then retrieves them and sends them on. This suggests the other name for 
this structure - we shall run into it again in the chapter on Deadlocks, where it is called, slightly 
fancifully,  an "infinite queue".  You will  find that it is one of the most useful  techniques for 
preventing deadlocks. 

Why did we call it an "infinite queue"? a) In the old days we used to call "connections" "queues". 
b) Using a file for this type of structure gives us an effectively infinite capacity because, while a 
connection has whatever capacity the developer specified (or the default if none was specified), 
the pattern shown in Figure 15.6 can keep on soaking up IPs until it hits the maximum number of 
records  allowed  by  the  operating  system  or  storage  device.  Actually,  we  could  increase  its 
capacity still further by using smart code inside a special-purpose component. 

Given that processes are connected by queues, how can a particular type of process also be called 
a "queue"? We suggested at the beginning of the chapter that processes can be as large or small 
as you like. For pragmatic purposes, we have chosen to pick a certain "grain" of process as the 
one we will implement, and connect them with a different mechanism, the connection. There are 
higher-level processes, which we call subnets, and the highest subnets are job steps. Above this 
are still higher processes called jobs, applications, and so on. Different levels of this hierarchy 
will tend to be implemented by different mechanisms, but, if we need to, we can always move 
processes up or down the hierarchy. Treating a connection as a special type of process is like 
using a magnifying glass to zoom in on a part of our network. Any time we want a connection to 
behave  differently  from  normal  connections,  we  simply  replace  it  by  a  process  (plus  the 
connections on either end). We could also use this technique if we wanted to have another type of 
connection between processes, say, a connection supporting "priority mail". However this will 
require  additional  port  names  -  a  number  of  writers  have  described  processes  implementing 
FBP's connections (also known as "bounded buffers"), but we have found it more convenient to 
put them in the infrastructure. 

As I read the ever-growing body of literature on parallel processes, I have been struck by the 
variation in granularity across the various implementations,  from fine-grained to very coarse-
grained. And in fact you will have noticed that FBP processes vary from very simple to quite 
complex.  However,  they  do  seem  to  agree  on  a  certain  "grain  size".  In  the  chapter  on 
performance, we will talk about how granularity affects performance, and how this fact can be 
used to obtain trade-offs between maintainability and performance. 

In addition, we do not claim that the level of granularity described in this book is the best or the 
final one for all purposes - only that it is a level which we have found to provide a good balance 
between  performance  and  expressive  power.  It  is  productive  of  useful  components  and 
developers seem to be able to become comfortable with it! Here is a network which implements 
what used to be called a "half adder", using IPs to represent bits and FBP processes to model 
Boolean operations - while this worked fine as a simulation, I do not suggest that we could build 
a real machine on it (although we might be able to build a slow simulation of a machine)! 
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Figure 15.6 

where  RPL means  Replicate,  AND is  the Boolean AND operator,  and XOR is  the Boolean 
exclusive OR.

We alluded above to "managing" a communication line by means of matching VTAM processes. 
Here we could distribute a network of processes between multiple computers, which may or may 
not be in the same room, building, city or country.  This is "distributed" processing, which is 
gaining more and more attention. Instead of each computer labouring away by itself in splendid 
isolation, people today are accustomed to having computers be able to talk to each other around 
the world, using a wide variety of different communication techniques. The Net (Cyberspace) of 
today was foreshadowed within the IBM Corporation by the internal  network called VNET, 
which is an incredibly powerful medium for sharing information and ideas. I once impressed the 
heck out of a visitor by showing him how, from a terminal  in Toronto, by using a one-line 
command, one could display the VNET file traffic between Australia and Japan! 

While I am not an expert in distributed systems,  it  seems logical  to me that if we have two 
computers, each with multiple processes running on it, communicating asynchronously, then the 
two computers should be able to exchange data by simply using two dedicated processes at each 
end of the link. Schematically: 
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Figure 15.7 

This diagram shows two systems, each with a Sender and a Receiver process. The Sender of one 
system sends to the Receiver of the other, and vice versa. At the far left and far right of the 
diagram  there  will  be  more  processes,  which  are  implementing  the  applications  on  each 
computer. You could view this whole structure as a single loop-type network which has been 
distributed  over  two  systems  [the  fixed  capacity  of  FBP  connections  can  be  simulated,  we 
believe, by having R and S send and wait for acknowledgment packets, respectively, after every 
'n' packets]. 

Clearly, in this example, we have coupled our two systems together, so that the speeds of the two 
systems are effectively matched. However, if the traffic between the systems is low enough, this 
may not be a bad design for some scenarios. For example, suppose a bank decides to spread its 
processing  over  two or  more  machines  in  different  regions,  linked  by communication  lines. 
Banking  transactions  are  usually  characterized  by  high  "locality".  The  largest  proportion  of 
banking  transactions  will  be  on  the  customer's  branch,  a  smaller  number  will  be  between 
branches on the same regional computer (assuming the bank splits up its branches that way), and 
only what's left over will actually need to travel between different regional machines, and most of 
the time this traffic should be balanced in the two directions. So we can visualize each machine 
as a "cloud" of processes, and every so often a transaction gets sent across to the other machine. 
If response time is adequate and/or the traffic is low enough, the requesting process can actually 
wait until a response comes back. If this is not adequate, the requesting process must have some 
way of suspending the logic which needs the data, and then resuming it later. This is exactly the 
problem of suspending/resuming FBP processes, but at a higher level. Also, in the case of links, 
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there is the possibility that the link has gone down (when there is a physical medium like wire, it 
can  be  cut  or  struck  by  lightning),  so  some thought  has  to  go  into  what  kind  of  degraded 
performance  the  application should  provide  if  one of  the  systems cannot  communicate  with 
another. 

One  topic  which  comes  up  a  lot  with  distributed  systems  is  the  vexed  question  of  how to 
synchronize events across multiple systems. If all of the processes in an IMS application are 
running in the same IMS region, then issuing one Rollback command will undo all data base 
changes since the last checkpoint, so it is easy enough to undo some data base updates if it turns 
out that the larger action they are part of has failed. Now, however, imagine that we want to 
transfer funds between two different  hardware nodes -  you have to withdraw funds from an 
account  on  one  node  and  deposit  them  into  an  account  on  the  other  one.  Either  of  these 
operations can go wrong, so you need some hand-shaking to either delay both until you know it's 
safe, or be prepared to undo an earlier operation if a later one goes awry. The latter approach 
seems more natural, even if less general: you do the withdrawal first; if that works, you send an 
IP  representing  a  sum  of  money  to  the  other  node,  specifying  both  source  and  destination 
accounts. If the receiving end for some reason cannot accept the transfer, it gets sent back to be 
redeposited. You might call this the "optimistic" stategy, while only committing when you know 
both ends are OK is the "pessimistic" strategy. The point is that qualitative changes occur when 
you split your network between systems, but this is an area of expertise in its own right, and the 
argument  for  distributing systems  is  so  compelling  that  the new problems that  it  raises  will 
definitely be solved! After all, systems of communicating humans have been working this way 
since time immemorial! IBM has recently announced its Message and Queuing Interface, so it is 
betting that asynchronous communication between systems is the way to go, and I am sure there 
will be solutions to these problems appearing over the next few years. 

There is a lot of interest these days in what are called client-server relationships. You may in fact 
have realized by now that, in FBP, every process is a server to its upstream processes. In the 
banking  example  above,  where  there  are  more  than  two  systems  involved,  every  system  is 
potentially a server to all the others. So the client-server paradigm is a very general one, from the 
level of FBP processes as high up as you care to go. However, it is important to stress also that 
FBP processes are peers, and peer-to-peer, which is more general than client-server, is a very 
natural match with the FBP approach. The FBP model is cooperative rather than hierarchical. 

One major addition we have to make to the above schema is  to allow for the possibility of 
asynchronous flows from multiple sources. If the Toronto machine can have data flowing in from 
Montreal and/or Edmonton, it has to be able to accept data on a first-come, first-served basis 
(subject, perhaps, to a priority scheme if there is a need to handle express messages). We have 
already seen in FBP a mechanism which provides this - namely, multiple output ports feeding 
one input port. If you have this situation, you must have some way of routing the response back 
to the right source, so the data must be tagged in some way. In FBP, one way is to arrange for the 
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incoming data to contain a "source index", which we could use as an output port element number. 
Showing just two clients, schematically: 

Figure 15.8 

In this configuration "S.0" sends an IP to the server, and then waits for the response to arrive 
back, after which it can send another request. Meanwhile, "S.1" is going through the same cycle. 
You can see from the diagram that IPs from "S.0" and "S.1" will arrive at the server in "first 
come, first served" sequence. Of course, the server can only handle one request at a time, so it 
has to be able to process requests as fast as possible, relative to the arrival rate. Otherwise, a 
queue builds up which will in turn slow down all the processes requesting service. As in the 
above discussion of "cleaving" networks, any line in the above diagram can be replaced by other 
forms of communication, including the above-mentioned "Send-line-Receive" pattern, resulting 
in various kinds of distributed network. The "n to one" connection in the middle of Figure 15.9 
would be implemented very naturally as multiple Senders sending to a single Receiver process. 
In FBP, the reverse situation, a "one to n" connection, is not implemented directly in network 
notation, but can be implemented simply by a Replicate process. In a distributed network, this 
would correspond naturally to a "broadcast" communication function, where one process sends 
the same message to multiple  receivers.  This  is  the kind of  arrangement used by many taxi 
dispatching systems, where the dispatcher sends in broadcast mode, but individual taxis reply on 
their own wavelength. 
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We mentioned that the server in Figure 15.9 can only handle one request at a time. This would be 
the simplest way of implementing its logic. Another wrinkle might be to add an "express" port, 
like the express lane at some banks. However, unless the express port has its own server, this 
scheme can still be degraded by a low-priority request which is tying up the server. So it might 
be better to have two processes running concurrently,  one handling express requests, and the 
other low--priority requests. Of course, this adds logical complexity, especially if the two servers 
are  competing  for  resources.  One  possible  solution  is  to  implement  an  enqueue/dequeue 
mechanism  to  resolve  such  conflicts  -  this  actually  fits  quite  well  with  FBP,  and  was 
implemented experimentally in DFDM. The above-mentioned article (Suzuki et al. 1985) also 
describes a similar  feature its authors developed as an alternative communication mechanism 
between processes. 

Generalizing still further, we may multiplex the server by having multiple instances of the same 
component.  For  instance,  suppose  the  server  is  doing  I/O  which  may  be  overlapped  with 
processing - you could have many instances of the same component serving the client queue. 
This is like many bank branches today, where several tellers are servicing a single queue of 
customers. To allow them to overlap I/O, you have to be able to suspend only a single process on 
an event,  without hanging the whole application. DFDM supported this for the MVS "basic" 
access methods (BSAM, BPAM, BDAM), VSAM and EXCP. THREADS does not support this. 
Of course, this is subject to the same resource contention we talked about above. 

If you are going to multiplex your server processes, you will probably need a "load balancing" 
process to ensure that queues don't  build up more in front of some servers than others.  The 
resulting diagram might therefore look like this: 
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Figure 15.9 

In the above diagram, requests are assumed to be coming in at the left  side,  tagged with an 
indication as to their source. They merge into LB which performs load balancing, sending the 
incoming requests to whichever server has the shortest input queue (number of IPs in its input 
connection). From the servers, the IPs then travel to RF, which is a redistribution facility. From 
there  they  eventually  travel  back  to  their  original  requesting  processes.  You  will  find  a 
description in Chapter 22 of how this technique was used very effectively to reduce the run-time 
for a disk scanning program from 2 hours down to 20 minutes. 

One topic which has been getting a lot of attention recently is that of portability of code. This is 
certainly  one  of  the  appeals  of  HLLs,  but  my  personal  feeling  is  that  their  disadvantages 
outweigh their advantages. But clearly you cannot port Assembler language from one type of 
hardware  to  another  using a  different  instruction  set.  I  believe  the  solution is  to  port  at  the 
function level.  A Collator can be defined to do the same job on two or more input streams, 
independent of what language it was coded in. So we can move Collators from one machine to 
another  and  expect  that  our  function  works  identically.  Not  only  does  this  approach  take 
advantage of the strength of the black box concept, but it removes the necessity for code to be 
white  boxes  written  in  a  portable  language  (which  usually  results  in  lowest-common-
denominator languages, or frustrating and time-consuming negotiation about standards). 
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We have now seen how to decompose designs vertically, cleave them horizontally, and some 
other concepts such as client-server relationships. But in what order should you develop your 
application? I don't think there is a fixed sequence, but I have found two sequences productive: 
along the lines of bottom-up and top-down, I call them "output-backwards" and "centre-out". 
"Output-backwards" means that you start with the outputs intended for human consumption, and 
work backwards deciding how this data is going to be generated. If it's an interactive application, 
output is the screen, and you will eventually work back to the screen, which closes the loop. 
"Centre-out" means that you start with the core processes, usually the ones which do business 
logic, together with any required Collators and Splitters, and get them working using the simplest 
Reader and Display components. Fancy output formatting, input editing, etc., can then be added 
incrementally working out from the centre. This approach is really a kind of prototyping, as you 
can develop the main logic and check it out first, before investing effort in making the output 
pretty,  making  the  application  more  robust,  etc.  At  selected  points  along  the  way,  you  can 
demonstrate the system to potential customers, prospective users, your manager, or whomever. 

Last  but  not  least,  during  this  whole  process  of  development  you  will  want  to  test  your 
developing product. You can test any component by just feeding it what it needs for input and 
watching what comes out as output. You generate its input using Readers and its output using 
some kind of Display component. In the early stages, the simpler these scaffolding components 
are, the better. The trick, as in prototyping, is to only introduce one unknown at a time. The more 
you can use precoded components,  and the simpler  they are,  the less unknowns you will  be 
dealing with. Any time you want to see the data that is travelling across a connection, just insert a 
Display process, like a probe in an electrical circuit. So testing is very simple. 

As I have tried to emphasize in what went before, I feel that, while FBP is great for developing 
applications, it is perhaps even more effective in improving maintainability. After all, all attempts 
to  make programs more maintainable  after  the fact  have failed,  so  maintainability  has  to  be 
designed in from the start. As some of the anecdotes above attest, FBP seems to have it designed 
into its very fabric. Given that your program will change constantly over the years, you will need 
a simple way to verify that the logic which you didn't change still works. Testing that a system 
still behaves the way it used to is often called "regression testing". Wayne Stevens came up with 
an FBP-based technique for doing this. You take the original output of the system to be tested 
and store it in a file; you then imbed your system in a network like this: 
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where 
        SS represents the Subject System
        R is a Reader for the previously stored output  
        C compares the stored output against current output
        RPT generates a report on the differences

Figure 15.10 

This network is clear while also being generic. For instance, you might need to insert filters on 
C's two input streams to blank out things which will vary between the two runs, e.g. dates and 
times. You might want to display the differences in different orders, so you can insert a suitable 
Sort upstream of RPT. 

A related (FBP-specific) problem comes up if C's input streams are not in a predictable sequence, 
say, because they are the result of a first-come-first-served merge, or if overlapped I/O has been 
occurring, so some IPs may have overtaken others. The simplest solution is probably to sort them 
before C sees them, but a better one, if it is feasible, is to mark the IPs at a point where they still 
have a fixed sequence, so that they can be split apart again before doing the compare. Of course, 
any processing you do to the differences (after the compare) will be cheaper than processing you 
do before the compare process (assuming that most of the data has compared equal). 

I  have  given  you  a  very  high-speed  description  of  some  methodology  and  implementation 
techniques  which  are  characteristic  of  FBP.  You  will  doubtless  come  up  with  your  own 
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procedures,  guidelines  and  "rules  of  thumb",  and  I  hope  that  eventually  there  will  be  a 
community of users of FBP all exchanging ideas and experience (and experiences).... and more 
books! 
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Deadlocks are one of the few examples  in FBP of problems which cannot involve only one 
process,  but  arise  from  the  interactions  between  processes.  They  occur  when  two  or  more 
processes interfere with each other in such a way that the network as a whole eventually cannot 
proceed.  I  know  some  programmers  feel  that  they  have  traded  the  known  difficulties  of 
conventional programming for a new and exotic problem which seems very daunting, and they 
wonder  if  we  have  not  just  moved  the  complexity  around!  Although  deadlocks  may  seem 
frightening at first, I can assure you that you will gain experience at recognizing network shapes 
which are deadlock-prone, and will learn reliable ways to prevent deadlocks from occurring. I 
know of no case where a properly designed network resulted in a deadlock during production. 

First, however, I think we should look a little more deeply at the question I mentioned above: if 
FBP is as good as I claim, why does it give rise to a new and exotic class of problem which the 
programmer would not encounter in normal programming? Well, actually, it's not new - it's just 
that a conventional program has only one process, so you don't have to worry about deadlocks. In 
FBP we have multiple processes, and multiple processes have always given rise to deadlocks of 
various  kinds.  If  I  have  convinced  you  in  the  foregoing  pages  that  the  FBP  approach  is 
worthwhile,  then you will  be relieved to know that there is quite a large literature on multi-
process deadlocks. Anyone who has designed on-line or distributed systems has had to struggle 
with this concept. For instance, suppose two people try to access the same account at a bank 
through different Automatic Teller Machines (ATMs). In itself this doesn't cause a problem, one 
just has to wait until the other one is finished. Now suppose that they both decide to transfer 
money between the same two accounts,  but  in  different  directions.  Normally,  this  would  be 
programmed by having both transactions get both accounts in update mode (Get Hold in IMS 
DL/I terms). Now consider the following sequence of events (call the accounts X and Y): 

• trans A - get X with hold 

• trans B - get Y with hold 
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• (1) trans B - try to get X with hold 

• (2) trans A - try to get Y with hold 

At point (1), transaction B gets suspended because it wants X, which is held by A. At point (2), 
transaction A gets suspended because it  wants Y, which is held by B. Now neither one can 
release  the  resource  the  other  one  wants.  If  A had not  needed Y,  it  would  have eventually 
finished what it was doing, and released X, so B could have proceeded. However, now that it has 
tried to grab Y, the result  is an unbreakable deadlock. This is often referred to as a "deadly 
embrace", and in fact it has similarities to one kind of FBP deadlock. Usually on-line systems 
have some kind of timeout which will cancel one or both of the transactions involved. 

Normally, the chance of this kind of thing happening is infinitesimal, so a lot of systems simply 
don't  worry  about  it.  It  can  be  prevented  completely  by always  getting  accounts  in  a  fixed 
sequence, but  this may not possible  in  all  situations, so it  is  probably true to say that  some 
proportion (even if a tiny one) of transactions will deadlock in an on-line system, so you have to 
be able to  take some kind of remedial action. 

In FBP, we can also get deadlocks between the processes of a network. Of course, in an FBP on-
line system, each transaction would be a  network,  so you can get  deadly embraces between 
separate networks requesting the same resources, but we will assume these are handled in the 
normal way for the underlying resource management software. However, because a network has 
multiple processes, we can get deadlocks within a network. In all these intra-network cases, we 
have discovered that it is always a design issue. 

This  type  of  deadlock  can  always  be  detected  at  design  time,  and  there  are  tried  and  true 
techniques for preventing them, which we will be talking about in this chapter. Wayne Stevens 
also has a very complete analysis of deadlocks and how to avoid them in Appendix B of his last 
book (Stevens 1991). 

The general term for deadlocks like the deadly embrace is a "resource deadlock". There is a 
classical example of this in the literature called the "dining philosophers problem", which has 
been addressed by many of the writers on multiple processes. Imagine there is a table in a room, 
on which are are 5 chopsticks, spaced equally around the table, and a bowl of rice in the centre. 
When a philosopher gets hungry, he enters the room, picks up the two chopsticks on each side of 
his place, eats until satisfied and then leaves, replacing the chopsticks on the table (after cleaning 
them off, I hope). If all the philosophers go in at the same time, and each happens to pick up the 
chopstick to his right (or left), you get a deadlock, as nobody can eat, therefore nobody can free 
up a chopstick, therefore nobody can eat! Notice that the dining philosophers exhibit the same 
loop topology which I have been warning you about in earlier chapters. The dining philosophers 
can also suffer from the reverse syndrome, "livelock", where, even though there is no deadlock, 
paradoxically  one  of  the  philosophers  is  in  danger  of  starving  to  death  because  there  is  no 
guarantee that he will ever get the use of two adjacent chopsticks. Kuse et al. (1986) proved that, 
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although a  network  with  fixed capacity  connections  (like  the  ones  in  FBP)  can suffer  from 
deadlock, it can never suffer from livelock. 

We will use Figure 14.2 from the chapter on Loop-Type Networks to introduce an FBP version 
of a resource deadlock. I'll show it again here for ease of reference: 

Figure 16.1 

Suppose that A's logic and B's logic are both the same, and look like this: 
/* Copy IPs from IN to OUT */
        receive from IN using a
        do while receive has not reached end of data
                send a to OUT
                receive from IN using a
        enddo

Figure16.2 

In other words, they are both simple filters. However, suppose that under some circumstances B 
fails to send the IP it has just received to its OUT port, so its logic is effectively the following: 
/* Copy c-type IPs from IN to OUT */
        receive from IN using a
        do while receive has not reached end of data
                if condition c is true 
                        send a to OUT
                endif
                receive from IN using a
        enddo
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Figure16.3 

We'll begin by starting A. A sends an IP out of its OUT port. It next does a receive on IN, but 
there is nothing there, so it suspends. The connection between A and B now has something in it, 
so B starts up. Let's say condition "c" is false, so B receives the IP, but fails to send it out. B then 
goes on to its receive, and suspends. A is also suspended on a receive, but it is going to wait 
indefinitely as B hasn't  sent the IP that A is waiting on. B is suspended indefinitely since A 
cannot send what B is waiting on. This is very like the deadly embrace: two processes, each 
suspended waiting for the other to do something. Since A and B are suspended on receive, there 
is nothing active in our network (K has terminated). So no process can proceed. The program as a 
whole has certainly not finished normally, but nothing is happening! This is in fact how the 
driver recognizes that a deadlock has occurred. 

AMPS and DFDM add a wrinkle to this: it is possible to have one or more processes suspended 
waiting for an external event (such as I/O completion) to occur. In this case, the network as a 
whole goes into a "system wait", waiting on one or more external events. When one of these 
happens, the driver regains control, and gives control to the process in question. If it weren't for 
the fact  that  someone is  waiting on an external  event,  this  would look just  like a  deadlock. 
Instead, the event will eventually happen, allowing the process to continue, thus allowing all the 
other  interlocked  processes  to  start  up  as  needed.  This  feature  is  one  of  the  important 
performance advantages of FBP: unlike conventional programming, if a process needs to wait for 
an event to occur, it is usually not necessary with FBP to put the whole network into wait state 
(underlying software permitting). 

Let's redraw the diagram with the states of each process shown in the top left  corner of the 
process. You'll find this pattern of states is quite common, and is quite characteristic of a certain 
kind of deadlock. The drivers of all FBP implementations always list the process states as part of 
their diagnostic output in the event of a deadlock. 
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where T means terminated,
and   R means suspended on receive

Figure16.4 

Clearly,  this  kind  of  deadlock  will  occur  any  time  a  process  outputs  fewer  IPs  than  the 
downstream process requires. Since the only kind of resource "native" to FBP is the IP, the only 
problem can  be  non-arrival  of  IPs.  So  thorough  testing  will  detect  it.  We  could  also  have 
"infrastructure"  or  "hybrid"  (FBP  plus  infrastructure)  deadlocks,  where,  say,  one  process  is 
waiting on an external event which never happens, and another on an IP that the former is to send 
out. There is nothing to prevent a DFDM process from issuing an MVS ENQ, thus allowing two 
processes  to  interlock  each  other  by  both  issuing  two  ENQs  for  the  same  resource,  but  in 
different orders. Old-style deadlock considerations apply here, but, as I've said, this is a well-
understood area of computing. 

The other class of deadlock familiar to systems programmers is the "storage deadlock". In this 
kind of deadlock, the deadlock occurs because one process does not have enough storage to store 
information  which  is  going  to  be  needed  later.  This  type  of  deadlock,  unlike  the  resource 
deadlock, can usually be resolved by providing more storage (not always, because some variants 
of this continually demand more storage...). 

Here is an example of a storage deadlock: suppose you are counting a stream of IPs, and you 
want to print out all the IPs, followed by the count. The components for doing this should be 
quite familiar to you by now: the IPs to be counted go into the COUNT process at the IN port and 
emerge via the OUT port, while the count IP is generated and sent out via the COUNT port at 
close-down time. So all we have to do is concatenate the count IP after the ones coming from 
OUT. This is certainly very straightforward - here's the network:
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Figure16.5 

We  can  code  this  up  in  THREADS,  using  the  general  purpose  components  available  in 
THREADS.  We  will  be  describing  the  THREADS  syntax  more  fully  in  Chapter  23  on 
"Notation", so we will not show the full network definition here, but the essential point is that we 
will connect the OUT port of Count to IN[0] of Concatenate, and the COUNT port of Count to 
IN[1] of Concatenate, as follows: 
    Read(THFILERD) OUT ->
      IN Count(THCOUNT) OUT -> 
        IN [0] Concatenate(THMERGE) OUT ->
          IN Print(THVIEW),
    Count COUNT -> IN[1] Concatenate,
   'data.fil' -> OPT Read;

Figure16.6 

Running this network gives the following result, which is just what we would expect: 
RUNNING NETWORK deadlk
 Process: Read (THFILERD)
 Connection: Read OUT[0] -> IN[0] Count
 Process: Count (THCOUNT)
 Connection: Count OUT[0] -> IN[0] Concatenate
 Process: Concatenate (THMERGE)
 Connection: Concatenate OUT[0] -> IN[0] Print
 Process: Print (THVIEW)
 Connection: Count COUNT[0] -> IN[1] Concatenate
 IIP: -> OPT[0] Read
    'data.fil'
Scan finished
Length: 3, Type: A, Data: 111
Length: 3, Type: A, Data: 123
Length: 3, Type: A, Data: 133
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Length: 3, Type: A, Data: 134
Length: 3, Type: A, Data: 201
Length: 3, Type: A, Data: 211
Length: 3, Type: A, Data: 222
Length: 3, Type: A, Data: 234
Length: 3, Type: A, Data: 300
Length: 3, Type: A, Data: 450
Length: 3, Type: A, Data: 700
Length: 3, Type: A, Data: 999
Length: 10, Type: COUNT, Data: 12******70
Done

Figure16.7 

In this example, the extra asterisks and 70 in the count IP are due to the fact that this particular 
Count component (THCOUNT) allocates a 10-character IP, but uses the C function "ltoa" to 
display the count, in this case resulting in 2 characters followed by a binary zero byte. The rest of 
the IP is unchanged, so it contains "garbage" (official programming term). 

But now let's suppose that, for some perverse reason, you want to see the count IP ahead of the 
ones being counted. Since we're using a Concatenate function, you might think all we have to do 
is  concatenate the count ahead of the IPs coming out of OUT. So we change the picture as 
follows: 

Figure16.8 

Let's change the previous network to do this and try it out: 
  Read(THFILERD) OUT ->
      IN Count(THCOUNT) OUT -> 
        IN [1] Concatenate(THMERGE) OUT ->
          IN Print(THVIEW),
    Count COUNT -> IN[0] Concatenate,
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   'data.fil' -> OPT Read;

Figure16.9 

To our surprise, the result of this is a little different: 
RUNNING NETWORK deadlk
 Process: Read (THFILERD)
 Connection: Read OUT[0] -> IN[0] Count
 Process: Count (THCOUNT)
 Connection: Count OUT[0] -> IN[1] Concatenate
 Process: Concatenate (THMERGE)
 Connection: Concatenate OUT[0] -> IN[0] Print
 Process: Print (THVIEW)
 Connection: Count COUNT[0] -> IN[0] Concatenate
 IIP: -> OPT[0] Read
    'data.fil'
Scan finished
Deadlock detected
 Process Print Not Initiated
 Process Concatenate Suspended on Receive
 Process Count Suspended on Send
 Process Read Suspended on Send

Figure16.10 

This is definitely not the result we wanted! Now, the message said "Deadlock", so, as before, let's 
try taking the process states and inserting them back into the diagram:

where S means suspended on send,
      R means suspended on receive,
and   N means not initiated

Figure16.11 
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You will find that in this kind of deadlock there is always a "bottleneck", or point where the 
upstream processes tend to be suspended on send, and the downstream processes are suspended 
on receive. As we saw before, some processes may have terminated - these can be excluded from 
this discussion. Processes which are inactive or not yet initiated can be treated as if they are 
suspended on receive. 

If COUNT is suspended on send and CONCAT is suspended on receive, but they are adjacent 
processes, then clearly COUNT is sending data to a connection different from the one CONCAT 
is  waiting on!  Although there is  data  on the  connection labelled  OUT,  CONCAT insists  on 
waiting on a connection where there is no data, and, at this rate, there never will be! The problem 
is that the COUNT IP is not generated until all of the input IPs have been processed, and the 
connection labelled OUT has a limited capacity, so there is nowhere to store the IPs after they 
have been counted. 

Although this kind of deadlock resembles a resource deadlock (because each process is waiting 
on the other to do something it can't do), it can be resolved by giving one or more connections 
more storage, so it is of the class of storage deadlocks. You will remember that we don't make all 
our queues "infinite" because then you can't guarantee that everything will get processed in a 
timely manner (or ever, if you want to allow 24-hour systems). But if you visualize the OUT 
connection bulging like a balloon as IPs are pumped into it, you can see that, eventually, COUNT 
is going to have processed all its input and will generate the count IP, and we can start to let the 
balloon deflate back to normal! 

What's the best way of doing this? Unfortunately, the question depends on how many IPs are 
being  counted.  If  you  knew absolutely  how many  IPs  there  were,  you  could  just  make  the 
capacity  of  the  connection big enough.  We can do this  in  THREADS by adding a  capacity 
number in brackets after the arrow. Since "data.fil" has only 12 IPs, let's make the capacity 20: 
    Read(THFILERD) OUT ->
      IN Count(THCOUNT) OUT -> (20) 
        IN [1] Concatenate(THMERGE) OUT ->
          IN Print(THVIEW),
    Count COUNT -> IN[0] Concatenate,
   'data.fil' -> OPT Read;

Figure16.12 

The result is as follows: 
RUNNING NETWORK deadlk
 Process: Read (THFILERD)
 Connection: Read OUT[0] -> IN[0] Count
 Process: Count (THCOUNT)
 Connection: Count OUT[0] -> IN[1] Concatenate
 Process: Concatenate (THMERGE)
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 Connection: Concatenate OUT[0] -> IN[0] Print
 Process: Print (THVIEW)
 Connection: Count COUNT[0] -> IN[0] Concatenate
 IIP: -> OPT[0] Read
    'data.fil'
Scan finished
Length: 10, Type: COUNT, Data: 12********
Length: 3, Type: A, Data: 111
Length: 3, Type: A, Data: 123
Length: 3, Type: A, Data: 133
Length: 3, Type: A, Data: 134
Length: 3, Type: A, Data: 201
Length: 3, Type: A, Data: 211
Length: 3, Type: A, Data: 222
Length: 3, Type: A, Data: 234
Length: 3, Type: A, Data: 300
Length: 3, Type: A, Data: 450
Length: 3, Type: A, Data: 700
Length: 3, Type: A, Data: 999
Done

Figure16.13 

Worked like a charm! 

Hold on, though - how do you know the file will never exceed 20 IPs? Remember the provinces 
of Canada - the process has already started which should eventually lead to the creation of a new 
one (or several). It's a fair bet that there will always be 7 days in a week, or 365 1/4 days in a 
year, but most other "constants" are subject to change, not to mention really variable numbers 
like the number of departments in a company. 

Now  suppose  we  follow  the  balloon  analogy  a  bit  further  -  what  we  could  do  is  allow 
connections to bulge only if you would otherwise get a deadlock (i.e. no process can proceed), 
and let them bulge until we run out of storage. This initially seems attractive, but it makes error 
determination more complex. Remember that we allocate storage for IPs when they are created, 
not when we put them into a connection, so you will eventually run out of storage somewhere, 
and you won't know who is the culprit... And anyway, it's not a good idea to let the FBP Driver 
grab  all  of  storage,  because  the  storage  some  other  subsystem  needs  to  let  it  come  down 
gracefully may not be available. 

This whole area is tricky. If you know there will never be more than 50 provinces in Canada, and 
that you will never need more than 1000 bytes per province, you could hold them all in storage 
for a total of 50,000 bytes, which is pretty small peas these days. But what if each province is a 
tree, and you really don't know how many IPs are hung off each province, or how big they are? 

So far, the best general solution we have come up with is to use a sequential file.  You will 
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remember from Chapter 15 that we can replace any connection with a file.  Let's change the 
network as follows, using the notation we used in Chapter 15: 

Figure16.14 

In that chapter we used ---W [X] R--- to indicate a "sandwich" with the file being the meat, and a 
Writer and Reader being the bread on each side. In Chapter 15, we used automatic ports to ensure 
that the Reader does not start until the Writer is finished. 

Now, if you step this through in your head, or try it out on the machine, you will find that the file 
soaks up IPs until it gets end of data. Meanwhile CONCAT is waiting for data to arrive at IN[0]. 
The "meat"  file's  Reader can start  at  some point after this,  but will  only run until  its  output 
connection is full. At this point, the only thing that can happen is for CONCAT to receive the 
count IP, then end of data, then switch to receiving from IN[1]. From this point on, the data IPs 
will just flow through IN[1] to CONCAT's output port. 

We have seen that you can set capacities on all connections. What would happen if we gave all 
connections a standard capacity of 10? Then examples like the above [the situation before we 
added the sequential file "sandwich"] would work fine as long as there were only 13 Canadian 
provinces and territories. Add another province one day, and your nice production program goes 
boom! Since amounts of test data tend to be smaller than production amounts, we would never be 
sure  that  programs  which  worked  fine  in  test  would  not  blow  up  in  production.  We  have 
therefore  adopted  the  strategy  during  testing  of  making  connection  capacities  as  small  as 
possible, to prevent this kind of thing from happening. Zero-capacity connections would be very 
nice,  but they are qualitatively different  from non-zero-capacity  connections  (there are some 
situations where they really don't behave in the same way), so we use 1-capacity connections. 
Once we go into production, however, we can safely increase connection capacities to reduce 
context-switching overhead. This strategy has been followed in both DFDM and THREADS, and 
has been very successful at helping to reduce the occurrence of deadlocks. A propos, my son, 

- 186 -



Chap. XVI: Deadlocks - Their Causes and Prevention 

Joseph Morrison, an experienced programmer, has suggested the following aphorism: "During 
testing, better to crash than to crawl; in production, better to crawl than crash!" The second half 
of this doesn't mean, of course, that you should put poorly performing systems into production - 
it just means that in production, when problems arise, it is better to try to keep going, even if in a 
degraded mode, but of course you should make sure someone knows what's going on! There is a 
story about one of the early computers (either SAGE or STRETCH) which did such a good job of 
correcting storage errors,  that  for some time nobody noticed that  it  was running slower  and 
slower! 

In Chapter 15, we talked about how the Writer/Reader sandwich is sometimes referred to as an 
"infinite queue". This is a general solution for storage deadlocks, and the only slightly tricky 
thing about such deadlocks is figuring out which connection has to be expanded. If you bear in 
mind that it must be a connection which is full (i.e. its upstream process is suspended on send) 
while its downstream process is suspended trying to receive from a different port, you'll find it 
pretty easily. 

This dependency on number of IPs occurs in conventional programming, and you are probably 
familiar with the problem of having to make design decisions based on number of items. Michael 
Jackson [the writer on programming methodologies, not the singer] gives an example in his book 
(1975)  of  a  file  which  consists  of  two  types  of  groups  of  records  (we  would  call  them 
substreams), where the substream type is determined by the type of the last record, rather than the 
first. He gives as an example a file consisting of batches, each with a control record: if the control 
record agrees, you have a "good" batch; if it doesn't, it is a "bad" batch. The problem of course is: 
will the batch fit in storage? If it will fit safely, there's no problem. If not, you either use a file, or 
provide some form of backtracking (going ahead with your logic, but being prepared to undo 
some of it if it turns out to be a bad batch). In the foregoing I have tried to stress that it's not good 
enough if the batch fits into storage now - you have got to be sure it will fit in the future! 

There is one final type of deadlock which again involves a loop-type network, but where most of 
the  processes  are  suspended  on  send.  This  is  more  like  a  resource  deadlock  than  a  storage 
deadlock, and usually arises because one or more processes are consistently generating more IPs 
than they receive. In this kind of deadlock, giving them more storage usually doesn't help - the 
network  just  takes  longer  to  crash.  However,  in  the  case  of  a  loop  structure  like  a  Bill  of 
Materials explosion, some processes are consistently generating more IPs until  you reach the 
elementary items,  so you  have got  to  think pretty  carefully  about  how many IPs may be in 
storage at the same time. When in doubt, use a file! 

If all this seems a trifle worrying, in most cases you will find that you can recognize deadlock-
prone network topologies just by their shape. In fact, the very shapes of the above networks 
constitute a clear warning sign: any loop shape in your network diagram, whether 

circular 
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Figure16.15 

or divergent-convergent, 

  

Figure16.16 

should be treated with caution, as they are possible sources of deadlocks. 

In an earlier chapter (Chapter 8), we talked about how, after you have split a stream into multiple 
streams, the output streams will be "decoupled" in time. If you decide you want to recombine 
them, you will usually land up with a variant of the above diagram. Unless you are willing to use 
the "first come, first served" type of merge (by connecting multiple output ports to one input 
port), you are creating a very fertile environment for deadlocks. Generally speaking the split and 
merge functions have to be complementary, but that may not be enough. Let's set up an example. 
Suppose we want to spread a stream of IPs across 3 servers, and then combine them afterwards. 
One approach might be to use a "cycling" splitter, which sends its incoming IPs to its output port 
elements 0 to n-1 in rotation. We will also need a merge which takes one IP from each port 
element in rotation and outputs them to a single output port. The picture looks like this (setting 'n' 
to 3): 
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Figure16.17 

Now we can add any processing we like at the spots marked X, Y and Z. Well, not quite, as a 
number of people have discovered. For one thing, MERGE must see 0's, 1's  and 2's in strict 
rotation. If you want to drop an IP, you had better make sure there is a "place-holder" IP in its 
place, unless you can arrange to drop one or more entire sets of 0, 1 and 2. If you don't do this, at 
the least your IPs will be out of order, and you may eventually get a deadlock (actually that might 
be better from a debugging point of view!). The same thing applies if you want to add extra IPs, 
except  that  the  place-holders  will  have  to  be  in  the  other  streams.  We have found that  this 
impulse to split up streams into multiple ones is a common one among programmers, and it can 
be very useful. I give this example as a warning of some of the pitfalls which await you when 
you  try  to  recombine  them.  In  fact,  it  may  not  even  be  necessary!  You  may  find  that  the 
assumption  that  data  has  to  be  kept  in  strict  sequence  is  just  a  hold-over  from  the  old 
synchronous style of thinking!  [Humans usually like to see data in sort sequence, but computers 
often don't care!] 

I am going to show one more deadlock example, because it illustrates the use of the "close port" 
service, which has been required by all FBP dialects. Consider the following diagram: 

          

Figure16.18 
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You know that CONCAT receives all IPs from [0] until end of data, and then starts receiving 
from [1],  and so  on.  What  can  you  deduce  about  the  upstream process  Q?  Well,  it  should 
somehow be able to generate two output streams which overlap as little as possible in time. We 
also notice that this (partial) network has a divergent-convergent topology, which suggests it is 
deadlock-prone. What might cause it to deadlock? One possibility is if Q starts to send IPs to [1] 
while CONCAT is still expecting data at element [0]. What causes CONCAT to switch from [0] 
to [1]? CONCAT switches every time it detects end of data on an input port element. But... end 
of data is normally caused by the upstream process terminating, and Q has not terminated. So Q 
has to have some way to signal end of data on [0] to CONCAT, so CONCAT can start processing 
the data arriving at [1] - otherwise CONCAT will still be waiting on [0] while data build up on 
[1]. What Q has to do is close each of its output ports before it switches to the next one. This will 
send a signal downstream enabling CONCAT to switch to its next input port. 

I feel the example shown in Figure 16.18 is interesting as it illustrates a useful technique for 
subdividing  a  problem:  what  Q  is  really  doing  is  subdividing  its  input  stream  into  "time 
domains", which CONCAT can then safely recombine into a single stream. A lot of sequential 
files in the business world have this "time domain" kind of structure - e.g. a file might have a 
header portion, perhaps a list  of cities followed by a list of sales staff,  followed by a trailer 
portion. This kind of structure can be handled nicely by splitting processing into separate "time 
domains". 
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"One of the greatest advantages of little languages is that one processor's input can be 
another processor's output" - Jon Bentley (1988)

"Another lesson we should have learned from the recent past is that the development 
of 'richer' or 'more powerful' programming languages was a mistake in the sense that 
these  baroque  monstrosities,  these  conglomerations  of  idiosyncrasies,  are  really 
unmanageable,  both  mechanically  and  mentally.  I  see  a  great  future  for  very 
systematic and very modest programming languages" - E.W. Dijkstra (1972) 

Problem-oriented mini-languages can be thought of as essentially an extension of the types of 
parametrization we talked about in Chapter 5. Bentley, like many other writers, has pointed out 
the importance of finding the right language for a programmer to express his or her requirements. 
This language should match as closely as possible the language used in the problem domain. If 
you view the programmer's job as being a process of mapping the user's language to a language 
understood by the machine, then clearly this job becomes easier the closer the two languages are 
to each other. 

You may have gathered, correctly, that I am not overly excited about the HLLs (Higher-Level 
Languages) of today. They appear to me to occupy an uncomfortable middle ground between 
more elegant options at each end of the spectrum. At the low end: machine code - Assembler is 
fine;  at  the  high end:  reusable  "black box"  modules.  Some jobs  can really  only  be  done in 
Assembler (although C is moving in on its turf) - the problem is portability. Black box modules 
solve the portability problem much more effectively than HLLs - you just port at the function 
level, rather than at the code level.  Historically, HLLs evolved out of "small" languages like 
FORTRAN by the gradual accretion of features as people tried to extend the languages to new 
application areas. Most of them are on firmest ground when dealing with arithmetic because here 
they had traditional notations and experience to build on. 
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In my opinion, there are three major problem areas common to almost all HLLs: 

• the data types of variables, 

• constants 

• the basically synchronous nature of these languages. 

We have already talked about variables in the context of the usual computer concept of storage. 
Data types we have talked about in the chapter on Descriptors. Now let's talk about constants. 

Constants are usually not (constant, that is)! Constants are vastly overused, mostly because it is 
so easy to hard-code a constant into a program. To take an extreme position, I would like to see 
constants only used when they represent the structure of the universe, such as Planck's constant 
or  , or conversion rates between, say, kilometres and miles - they're not likely to change. A 
case can also be made for allowing metadata (data about data) although much of this can be 
avoided by judicious use of descriptors and generalized conversion routines. I also vote for zero 
and one - they're too useful (for things like clearing and incrementing counters) to give up! Also 
to one and zero let's add their Boolean cousins, "true" and "false". But that's the lot! 

An ex-colleague of mine  claims that he knew someone who wrote a program for a company 
which had exactly 365 employees. You guessed it - an employee left the company, and all the 
date calculations were off! While this story is probably apocryphal, there is an interesting point 
here: the only way it could have happened is if the program used the same constant for both 
numbers. Many shops ban literals, in an attempt to reduce this kind of thing, whereas, of course, 
it  only  helps  if  people  are  also  encouraged  to  use  meaningful  symbol  names.  If,  as  many 
programmers do, the constant in question was labelled F365, it would actually make this kind of 
error more likely. 

Literals  would actually  have prevented this kind of thing from happening,  whereas calling a 
constant  F365  works  the  other  way!  One  of  the  constants  should  have  been 
NUMBER_OF_DAYS_IN_YEAR (that's non-leap, of course), and the other one shouldn't have 
been a constant at all! Remember: most constants aren't! 
So far we have mostly talked about numeric values. There is another class of constants that one 
runs into quite often in programs: strings which identify entities or objects. Consider a test like 
IF PROVINCE = 'ONT'.....   

I would argue for two reasons that this shouldn't be used: the first point is that in HLLs we are 
forced to compare two character strings - whereas what we would like to ask is (in English): 
If this province is Ontario,....

This may not look very different, but in the first case we are dealing with how affiliation with 
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Ontario is encoded in a particular field; in the second, we are asking if the entity being referenced 
is the entity Ontario (with all its connotations). Smalltalk is better in this regard: PROVINCE 
would  be  an  attribute  of  one  object  which  contains  the  handle  of  another  object  (ontario) 
belonging to the class Province, and you can ask if two objects are the same object (==). Another 
programmer, or even a different field of the same object which needs to reference Ontario, might 
specify it using the value 2, so you would spend all sorts of machine resources converting back 
and forth between 2 and 'ONT'. Nan Shu has identified conversions between codes as one of the 
most common functions performed by business application code (Shu 1985). 

The second point is more subtle: even if you can refer to unique objects as a whole, rather than 
by an indirect encoding, should you? Consider the following sort of code, which we often find in 
business applications: 
IF PROVINCE = 'NB' OR PROVINCE = 'PEI' OR PROVINCE = 'NS'...

If Canada adds a new province, how do you find all the lists like the above, and how do you 
decide if the new province should be added or not? What is the concept that makes this set of 
provinces different from all the others? This is an example of a very common problem with code 
which is probably responsible for significant maintenance costs in shops around the world. At 
this point you will probably realize that we haven't done anything yet in FBP to prevent people 
doing this. And as long as we are stuck with today's computers as the underlying engine, we 
probably can't, unless we ban constants entirely! What we can do is provide tools to help with 
this kind of situation (i.e. support the logic which people are trying to implement),  and raise 
programmers' consciousnesses by means of walk-throughs, inspections, apprenticeship or buddy 
systems, or whatever. 

The general  concept  which I would like to see known and used more widely is  what IBM's 
Bucky Pope calls "class codes". He suggests you first ask what is the underlying concept behind 
the list; you then build a table or data base, and implement the concept as an attribute of the 
entities (in this case, provinces). So the above test becomes something like: 
FIND PROVINCE IN PROVINCE_TABLE 
IF MARITIME, .....

The overhead goes up a bit,  but maintenance costs  go down drastically,  and since it  is now 
generally accepted that human time is a lot more expensive than machine time (Kendall 1977), it 
seems short-sighted to keep on perpetuating this type of code, and incurring the resultant costs. 
By the way, this principle applies equally if only one province happens to be mentioned in a 
particular list: how do you know that a new province won't show up which shares attributes with 
the one you've picked? 

If we are going to (almost) ban constants from code, put entity attributes and what have been 
called "variable constants" on disk, why not put logic on disk as well? This gets us into the 
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domain of rules-driven systems. Remember we said above that FBP gets rid of a lot of the non-
business logic, so most of the remaining logic in code should be either general-purpose, e.g. the 
logic to Collate two data streams, or it should be business-related, e.g. IF INCOME > $50,000, 
CALCULATE SURTAX USING FORMULA ..... Now, both the criterion and the formula are 
certainly going to  change,  and on a  regular  basis,  so  why put  them in code which requires 
programmers to change it, after which the changed programs have to be recompiled, approved, 
promoted, the old ones archived, and so on and so on? It seems much better to put the whole 
thing  somewhere  where  it  can  be  maintained  more  easily,  and  perhaps  even  by  non-
programmers.  I believe that much business logic, perhaps almost all,  can be put on disk and 
interpreted using simple interpreters. 

One important question remains: whether to put our attribute tables, rules, etc., in load modules 
(created with a compiler and linkage editor) or in data files. The former is really a half-way 
house, as you still need programmers to maintain them, but at least the information is separate 
from code, so it can be shared, and is much easier to manage and control than when it is buried in 
many different code modules. However, I believe putting this kind of information into data bases 
is a still better solution, as it can be updated by non-programmers, e.g. clerical staff, and it can 
have separate and specific authorization. 

In rules-driven systems, straight sequential logic may not be the best way to express the rules. 
PROLOG and its derivatives provide a very interesting approach to expressing logic. It should be 
stressed that logic programming is not incompatible with FBP - I once wrote an experimental 
component which drove a PROLOG set of rules to perform some logic tests on incoming IPs. 
The effect was like having a friendly data base, because you could ask questions like "list all the 
mothers older than 50" even when you had not stored the attribute "mother" explicitly in the data 
base (just tell PROLOG that a "mother" is anyone who is female and has offspring). The logic 
programming  people  have  independently  explored  the  possibilities  of  combining  logic 
programming with parallelism, e.g. such languages as PARLOG. 

Now, if we can put our rules out on disk, avoiding such perilous traps as variables and constants, 
and restrict  the code proper to non-business-related logic, then it seems that there really isn't 
much role for today's HLLs! 

So far, we have talked about the basics of most programming languages as being arithmetic and 
logic, but there exist languages today which address quite different domains. Over the years, we 
have  seen  a  number  of  other  kinds  of  specialized  languages,  such  as  SNOBOL  (pattern-
matching),  or IPL V (list processing) appear and sometimes disappear. Since in conventional 
programming it is hard to make languages talk to each other, it is generally the richer ones which 
have survived. FBP, on the other hand, makes it  much easier for languages to communicate, 
which  suggests  that  what  we  may  see  is  a  larger  number  of  more  specialized  languages 
communicating by means of data streams. Based on our experience with human languages, what 
would be very nice is if they could all share the same syntax, but work with different classes of 

- 194 -



Chap. XVII: Problem-Oriented Mini-Languages 

objects (semantics). It has been found that humans have a lot of difficulty switching from one 
syntax to another, whereas we can hold many sets of words independently without getting them 
confused. This is supported by recent work with bi- and multi-lingual communities - people tend 
to use one syntax for both languages, or a hybrid, but they can keep the vocabularies quite well 
separated. 

A colleague of mine makes the interesting point about the above scenario that it ties in with the 
new science of Chaos. If you consider the total application space as chaotic, then you will get 
areas of order and areas of disorder (Olson 1993). Each mini-language can handle its own area of 
order, and can communicate using standard interfaces (IPs) with other areas of order. Each mini-
language defines its own paradigm - while no paradigm should be expected to do the whole job, 
judicious combination of many paradigms is often highly effective. 

I would argue that, any time a set of parameters reaches a certain level of complexity, you are 
approaching  a  mini-language.  The  parameters  to  the  IBM  Sort  utility  almost  constitute  a 
language about sorting, and in fact IBM has added a free-form, HLL-like syntax to the older-
style  pointer  list  which  it  used  before.  Since  decoding  the  sort  parameters  is  relatively  fast 
compared with the sort itself, it is reasonable to make the sort parameters as human-convenient as 
possible.  The semantics of a set  of sort  control  statements  are quite simple, just  referring to 
objects of interest to the Sort (and its user). 

Earlier in this book I mentioned a prototyping system which I built, in which you could describe 
screen layouts in WYSIWYG form. For fun I added a graphics subsystem to it, which let you 
specify simple pictures. The problem was: what mental model would its users find convenient? I 
decided  to  use  the  idea  of  colour-filled  polygons,  which  had been used  successfully  by  the 
Canadian videotext system, Telidon. I later added the ability to have curved edges, as well as 
straight ones, plus various fill patterns, such as cross-hatching. While this choice of mental model 
may seem fairly obvious, I could have used bit maps, straight lines, or some other primitive, but I 
found the  polygon  idea  seemed to  be  an  especially  good  bridge  between  the  artist  and the 
computer. Not only was it a good match with the software I was using (GDDM), but also I was 
pleased to discover how fast I could develop a drawing or modify an existing one. The artist I 
was working with found that he was able to adapt to this medium, and I was impressed with the 
quality of what we turned out, working together! I use this perhaps rather simple example to 
make  the  point  that  it  is  the  mental  model  which  is  important,  and  which  makes  the  most 
difference in how usable people find a tool. Humans are visualizing creatures, and, if they have 
trouble developing a mental model of your tool or system, it will never become real to them, and 
they will have endless trouble with it. 

If you have spent the last few decades labouring with a conventional HLL, by now you may be 
wondering how one can do anything without using variables or constants! Well, quite a bit, as it 
turns out. In a later chapter (Streams and Recursive Functions), we will talk about a style of 
programming which is called generically applicative or functional. When you combine the idea 
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of  functions  with  recursive  definition,  it  turns  out  that  you  can  express  quite  complex 
computations without ever using a variable (Burge 1975)! As for constants, as long as we put 
most of them on disk, I'll be quite happy! Of course, I am not suggesting that tax specialists have 
to learn recursive programming in order to be able to describe tax calculations to the computer, 
but,  based on various experiences, I have a strong intuition that,  by judiciously combining a 
number of the ideas described so far in this book and some that are about to be described, we 
could develop user-friendly languages which would be decades ahead of the rather user-hostile 
tools we are forced to use today. 

In the next chapter I am going to describe some work I did on a suggested approach to a mini-
language for describing business processes running in an FBP environment, taking advantage of 
the fact that there are other precoded FBP components (such as Collate) to do a lot of the hard 
work. It is applicative, in that it doesn't use variables but defines its outputs purely in terms of 
operations on its inputs. This is not supposed to be a definition of a complete language, but more 
of a sketch of how a language might look which breaks with many time-honoured but rather 
shop-worn traditional solutions. 

Chap. XVIII: A Business-Oriented Very High Level 
Language

The following is a sketch for a different kind of language - one that describes business logic 
descriptively, rather than procedurally. I was reading an article by M. Hammer et al. (1977), 
describing a system which they called the  Business Definition Language (BDL), and I started 
thinking that some of BDL's basic ideas were really complementary to FBP - FBP doesn't have a 
native  way  to  express  business  logic,  while  FBP  provides  simple  solutions  to  some  of  the 
awkwardnesses that I spotted in BDL. BDL might be described as a tabular/functional approach 
to expressing business applications, which embodies a number of desirable program attributes 
listed by B. Leavenworth in his 1977 paper: 
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• elimination of arbitrary sequencing (sequencing not dictated by the data dependencies of 
the application) 

• pattern-directed structures (non-procedural specification) 

• aggregate operations 

• associative referencing 

Of course, these are embodied in BDL, which the following language is modelled on, but it 
seems to me that FBP can make BDL even more natural, so these attributes should carry over to 
the resulting language. 

I want to expand on these four points a bit. The following are my interpretations, but I hope that I 
don't depart too far from the spirit in which he intended them! 

Leavenworth sees the first point, "arbitrary sequencing", as one of the serious problems with 
procedural languages, and of course it has come up frequently in various forms in this book. As 
we  have  said  before,  the  von  Neumann  machine  forces  you  to  fix  the  sequence  of  every 
statement, whether it matters to the logic or not. Consider the two statements 
MOVE A TO B
MOVE C TO D

Clearly it makes no difference to the logic what order they are executed in, but change the first 
statement to refer to C or D, and you reverse them at your peril! Thus, 
MOVE A TO C
MOVE C TO D

is totally different from 
MOVE C TO D
MOVE A TO C

It  is  also  worth  noting  that  much  of  the  optimizing  logic  in  compilers  involves  trying  to 
determine which statements can be moved and which ones cannot. 

It should also be clear in the light of what has gone before why "pattern-directed structures" are 
desirable. Humans are much better at working with descriptions (especially visual ones) than lists 
of instructions. 

"Aggregate operations" - this is closely related with trying to avoid procedural solutions. We 
have found that the higher level the constructs the language deals with, the more powerful it is, 
and the less of a barrier there is between the programmer's concept and its expression in the 
language. Of course, higher-level constructs require higher-level operations. 
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An example I have always found interesting is the APL language. It is highly expressive and a lot 
of its power derives from the foundation work that Ken Iverson did investigating the basic theory 
of matrices. While most of us were taught to treat matrix multiplication as an atomic operation, 
Iverson found a simple yet powerful way to make visible the fact that it is really a particular 
relationship between two binary operators, which he represented using the "dot" symbol. This is 
a second-order operator, as it works with other operators, rather than variables. Not only did this 
allow other binary operators to be combined in the same way (like "or" and "and", or "min" and 
"max"), but it freed up the simple "multiply" operator so it could be generalized smoothly from 
scalars to vectors to matrices. 

As an example of aggregate operations, let's compare the way PL/I and APL handle matrices. In 
PL/I you can write the following statement: 
A = A + A(2,3);  

This is implemented in a very procedural manner. PL/I executes this statement one element at a 
time, and does it in such a way that the rightmost dimension is the one which cycles most rapidly. 
So the sequence will be A(1,1), A(1,2), ..., A(1,n), A(2,1), A(2,2), ..., 
and so on. When these additions hit A(2,3), all "later" elements (those following A(2,3)) will 
have the new (doubled) value added to them, rather than the original one. In APL, on the other 
hand,  matrices  are  treated  as  "aggregates",  which  are  conceptually  handled  all  at  the  same 
moment of time. Thus, you can write 
A <- A + A[2;3] 

and it  behaves  much like  the PL/I  example,  but  A[2;3] does  not  change halfway through 
execution. This of course means that APL has to be able to manage matrices as more or less 
opaque objects, while the PL/I model is more that a matrix is just another part of the machine's 
memory,  with  a  particular  structure  superimposed  on  it.  In  FBP,  although  for  performance 
reasons we have to process a stream one IP at a time, you very often can think of it as a single 
object. If you really have to process a whole stream as a single object, we have seen in the earlier 
chapters that you can turn it into a tree, and then turn it back later. In the chapter on Streams and 
Recursive Functions we will see how one can use recursive function definitions to effectively 
treat a whole stream as a single aggregate object. 

"Associative  referencing"  means  the  ability  to  locate  an  object  by  content,  rather  than  by 
location. On most modern machines, this is done by means of a look-up of some sort, although 
there have been machines designed which did it by hardware. A few years ago there was a lot of 
interest in associative or "content-addressable" memory. While it is certainly nice to be able to 
find things that have moved, my feeling is that "handles" are fine, provided you have a way to 
find new things which you have never searched for before. Once they are found, they shouldn't 
have to move again,  and their  handles can be passed from process to process.  An additonal 
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wrinkle is to leave a trail in the rare event that things do move (of course in both cases we are 
talking about a single shared memory). It is interesting that the main difference between Carriero 
and Gelernter's Linda (1989) and FBP is that the former is associative, while FBP, as we have 
seen, uses connections and handles. We will be looking at Linda in more detail in a later chapter, 
but  it  seems to  me that  Linda's  design  should increase  its  overhead considerably over  FBP, 
without a corresponding advantage in expressiveness. An example in one of the articles about 
Linda describes how to simulate an FBP connection, and it would be trivial to write matching 
FBP components which store and retrieve Linda tuples! Of Leavenworth's four points, this last 
seems to me the least exciting, but it should certainly be borne in mind as a design technique. 

To give you a flavour of BDL, here is a sample definition for the "extended details" file (or 
stream) in Leavenworth's paper.  This is the same TR1 that was used in Chapter 10. In what 
follows "'s" is the BDL notation denoting a collection or group. 
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[I shall continue to use their term "extended price", although a better term would be something 
like "extended monetary value".] 

I have labelled the columns as shown to give an indication of their purpose and interrelationships 
(BDL proper does not do this). The first two columns express the hierarchical structure of the file 
in question and the derivations of each of the entries, while the last two columns give definitions 
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of  all  names  appearing  in  the  second  column,  and  of  any  new  names  introduced  in  these 
definitions.  The  fourth  column uses  some  reserved  words  to  describe  relationships  between 
words in the first column and their sources. Thus, the derivation of "Ext price" is shown in the 
second column, and uses "Unit price" and "Quantity", whose definitions are in turn shown in the 
third and fourth columns. The whole approach is based on definitions, rather than procedures , 
which I found very appealing. 

The structure shown in the first column is considered to repeat indefinitely through the "Ext 
detail's" file. 

If a job step produces more than one output file, a BDL "program" similar to that shown above 
must be given for each one separately. Clearly, since each one is "driven" by the same input file, 
there  is  unnecessary  duplication  of  logic  here.  In  fact,  in  an  attempt  to  avoid  uncontrolled 
"global" definitions, the BDL language is considerably more redundant than one would like - 
every duplication increases the risk of one or more of the copies getting out of step. 

A more subtle problem arises from the lack of an explicit stream concept: in column three of the 
referenced diagram, "Product Master" is defined as that Master record (hopefully unique) whose 
"Master Product number" field is equal  to the "Detail  Product number" in the Detail  record. 
WITH is  an  example  of  what  Leavenworth  calls  "associative  referencing"  -  it  describes  an 
implicit matching process. However, there is no indication of how the appropriate master record 
is located. While this is to some extent deliberate, when we actually come to build an application, 
we  will  eventually  have  to  choose  between  various  techniques  for  relating  details  and their 
corresponding masters, e.g. direct access, sort and merge, and perhaps others, which will have a 
profound effect on the basic structure of our design. It is true that the software could be allowed 
to select the technique automatically, but in our work with FBP we tend to feel that it is better to 
leave developers free to choose whichever technique seems most appropriate. Remember there 
will be prewritten, "black-box" code available to support whatever approach they select. 

In what follows, I will assume that sorted streams of data have been merged using Collate, so the 
master  records  will  precede  their  associated  details.  I  will  now sketch  out  a  possible  mini-
language which holds to the spirit of BDL, while taking advantage of the fact that we are only 
describing a single FBP process. 

Three types of non-procedural information together describe what you want this kind of process 
to do: 

• a description of the input and output streams, down to the IP level, and the creation and 
output criteria for the output IPs (let's call it an IP Relationship Diagram) 

• descriptions of the various IPs involved (IP Descriptions) 

• description of the calculation basis for "derived" fields - fields not present in the input IPs, 
or whose values are changed by the component (Derivation Descriptions). 
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A free-form notation is used in the accompanying figures, using English-like names for fields, 
and upper-case strings for "reserved words". 

In what follows, square brackets will indicate that a clause seems slightly redundant and could 
easily  be eliminated  by adding a  new rule  to  the  set  of  evaluation  rules.  These  are  usually 
reasonable defaults, which can still be overridden if the developer needs to. 

I  will  now  show  the  three  portions  of  a  Component  Description  listed  above,  using  the 
component TR1 from the above example. 

Here is the IP Relationship Diagram (IRD) for TR1 first: 
INPUT STREAM
1. Merged Input
 2. Product Substream: REPEATING
  3. Product Master
  3. Sales Detail: REPEATING
OUTPUT STREAMS
1. New Masters
 2. Product Master: ONE PER Product Substream
1. Sort Input
 2. Sales Detail: [ONE PER Sales Detail]
1. Report-1
 2. Product Summary: ONE PER Product Substream [,NEW]

This  table  describes  relationships  among IPs,  so  the  lowest  level  items at  any point  always 
describe IPs - all higher level items are substreams, while all level 1 items are streams. 

Only one input stream may be specified in the IRD, but there may be any number of output 
streams. 

All streams consist of repeating patterns of IPs, and a COBOL-like "level" notation is used to 
show how they are nested to form a complete data stream. 

The repeating pattern may be trivial, e.g. the stream may consist of only one IP, or it may be as 
complex as desired, consisting of a variable number of substreams, each of which consists of a 
variable number of substreams, and so on. In what follows, unless explicitly stated otherwise, the 
word "substream" will be taken to allow a single IP. This way I don't have to keep on saying "IP 
or substream". Similarly, "substream" can also refer to the whole stream, except where explicitly 
stated otherwise. 

A substream in an IRD always has a "quantifier", which may, for an input stream, be one of the 
phrases REPEATING, OPTIONAL or ONE-OR-MORE, or absent; for an output stream, it may 
be  either  ONE PER or  absent.  These  quantifiers  describe  the  number  of  occurrences  of  the 
substream in question within the next higher level substream. If no quantifier is specified, then 
there  is  exactly  one  such  substream  in  the  next  higher  level  substream.  REPEATING, 
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OPTIONAL and ONE-OR-MORE mean respectively: zero or more, zero or one, and at least one 
occurrence. ONE PER 'x' indicates that the substream in question is to be generated once for each 
occurrence of substream 'x' (let's follow BDL in calling 'x' the "cause" of the substream being 
described). 

Examining the IRD for TR1, we note that the input stream consists of zero or more Product 
Substreams, each of which consists of one Product Master, followed by zero or more Details. 
You will  remember that substreams are delimited by bracket  IPs,  so a Product  Substream is 
additionally  marked  by  the  presence  of  a  Product  Master.  We  have  run  into  this  kind  of 
redundancy before,  but it  doesn't  hurt,  and, if  the Product Master had been OPTIONAL, the 
brackets would be the only way to separate Product Substreams. 

In the output streams, two of the IP types (Product Masters and Sales Details) actually came from 
the input stream, and are referred to as OLD, while the Product Summary IPs are created by TR1, 
and are called NEW. 

The PER clause on Extended Details is shown in square brackets because a reasonable additional 
evaluation rule might be: if the PER clause is omitted on an OLD IP, the IP is its own "cause". 

Now we will need some kind of description of the IPs. This has been discussed at length in the 
chapter on Descriptors, so I will not go into much detail here. The designers of BDL also saw the 
need to allow a more varied set of field types than conventional HLLs. A Sales Detail IP could 
also be described using COBOL-style level numbers to show relationships between fields, but the 
positioning of the fields is only important when importing or exporting files. The other main 
function of level numbers - to show groupings - either goes away when one has more powerful 
field types, or can be handled in other ways. We might therefore show the fields of an Extended 
Sales Detail IP as a simple list, e.g. 
Extended Detail: 
{
  Product Number: IDENT, 
  Salesman Number: IDENT, 
  District Number: IDENT, 
  Quantity: QUANTITY, 
  Unit Price: $CDN, 
  Extended Price $CDN;
}

The last thing we have to specify is the derivations of any derived fields. The following diagram 
shows  the  algorithms  for  those  fields  which  are  changed  or  created  by  the  action  of  the 
component in question. Fields which are unchanged from the values they had on entering the 
component are not shown. Indentation is used to relate fields to the IPs they are part of. 
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       Name             |       Derivation 
  ---------------------------------------------------
                        |
   New Master           |
     Year-to-date Sales |   Year-to-date Sales
                        |      [IN Product Master]
                        |         + Product Total
                        |
   Extended Detail      |
     Extended Price     |   Unit Price * Quantity
                        |
                        |
   Product Summary      |
     Product Total      |   SUM of Extended Price
                        |       [OVER Product Substream]
                        |
     Year-to-date Sales |   SAME as IN New Master
                        |

When a field in a "new" IP is not mentioned, it is assumed to have the same value as the field 
with the same name in the "cause" IP. 

The  function  "SUM  of  A  OVER  B"  sums  all  occurrences  of  field  A  within  higher-level 
substream B (which is called the "range" of the OVER). Thus, Product Total is defined as the 
sum of Extended Price OVER Product Substream. The OVER-clause is shown in square brackets 
in this example, as it becomes redundant if the following rule is added: if OVER is omitted, the 
"range"  is  taken  to  be  the  "cause"  for  the  field  being  computed.  Although  this  may  seem 
arbitrary, in fact it covers off all the SUMs so far encountered in sample problems. 

The IN in Year-to-date Sales is similar to qualification in COBOL or PL/I. It can be omitted if it 
is understood that it is the field of the same name in the "cause" that is meant. 

"SAME as" is self-explanatory. 

The Product Summary report poses a different kind of problem as it has to do with printing a 
human-readable  report.  Of  course,  screens  are  also  human-readable,  so  many  of  the  same 
solutions should apply to both. There are many possible approaches to parameterizing a report, 
and,  under  FBP,  there  is  no  need  to  decide  on  a  single  unique  solution,  as  many  printer 
components can all coexist in your library of components, just as a carpenter can have many 
different  kinds  of  glue  for  different  jobs.  However  it  is  not  hard  to  imagine  that  a  useful 
component  would  be  a  "report  interpreter"  similar  to  the  interpreter  which  interprets  the 
derivation rules. I am not going to show how reports could or should be defined, but am rather 
going to mention a few ideas that might be considered in designing such general components. 
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We have already seen in Chapter 10 what a useful Report generator component might look like, 
so we will concentrate on the components which generate the report lines which are fed into it. 
This of course brings in the question of "representations" that we talked about in Chapter 11 
(Descriptors). There we talked about how representation standards normally come in layers: in a 
given application you may have an international standard, a national standard, and a company 
standard, and a particular report may even use one or more such representations for the same 
domain, e.g. amounts with and without separators. Since reports and screens have to be human-
readable, you also have the problem of multilingual support, and two very noticeable differences 
between languages are: 1) that phrases in different languages are frequently of different lengths, 
and 2) that values may have to be imbedded in text in different orders. 

The above-mentioned problems have been solved quite well in the area of message-handling. A 
common solution is to simply provide "skeletons" which contain the fixed information and have 
"insertion points" for variable information. This assumes that most of the variable information is 
numeric,  but  it  covers  most  common reporting requirements.  So a  report  or  a  screen would 
probably be like a set of messages with fixed columns (and maybe rows) added. 

Reports (and screens which reflect reports) also will have subtotals and total lines, which, as we 
have seen, can be driven by special IPs generated upstream at close bracket time. There are a 
number of report generation tools, of which RPG is one of the oldest and best known, which can 
act as sources of mental models. The report design files or screens should resemble the final 
document in layout (WYSIWYG), but with the addition of IP type information (e.g. heading, 
detail, total for such and such level), and codes for common variable information, such as date, 
time, page number, etc. Such a design can then be encapsulated in a component, or maybe more 
than one - remember, you are not restricted to only one report generator! Similar specifications 
are showing up on in popular PC applications - for instance, the Report Generator function of the 
Database subsystem of Microsoft's Works™. 

The foregoing is just a sketch for a mini-language that might do some of what people use HLLs 
for today. Because FBP allows us to mix languages freely, no one language has to be able to do 
everything,  so we can design languages to specialize in different  subject  areas.  By the same 
token, the same mental model is not valid for all possible uses - if you want to do some logic by 
pattern-matching, you do not have to do it all by pattern-matching! Similarly, while mathematics 
is a great foundation for some types of programming, that does not mean that all programmers 
must become mathematicians. Lastly, a language can be expressive and still be rigorous. If the 
mental model is one that people find easy to grasp, it should enhance productivity, rather than 
just becoming an extra burden on the developer. It is absolutely crucial that we shift a certain 
amount of the work of developing applications to people who are not necessarily professional 
programmers, both to reduce the DP bottleneck, but also to take advantage of their expertise. 

The various diagrams and lists that we have seen above provide the advantages of applicative 
programming notation without the complexity of nested functions which are normally required in 
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such  a  notation:  FBP  does  this  by  making  explicit  the  timing  relationships  of  the  different 
processing events, and the derivational relationships of the IPs involved in that processing. The 
righthand side of  a  derivation specification  is  in  fact  a  functional  expression  of  any desired 
complexity (it can even include conditional parts analogous to the cond function of applicative 
programming),  and such a specification conforms to the "single assignment" characteristic of 
applicative programs. 

Because of the open-endedness of the FBP architecture, a component of this type does not have 
to cover all possible applications, and can be part of a total application comprising both custom 
and  off-the-shelf  components.  One  can  easily  visualize  a  whole  range  of  such  components 
relevant to different application areas, essentially acting as repositories of specialized knowledge 
about  these  areas.  If  one  component  is  more  powerful  than  another  one  or  covers  a  wider 
application area, a sort of evolutionary "survival of the fittest" would be expected and is in fact 
desirable.  The problem is that some dinosaurs have survived far beyond their "natural"  span 
because  of  the  enormous  inertia  of  our  environment,  rather  than  because  of  any  intrinsic 
superiority! 
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An  increasing  number  of  computer  applications  are  interactive  -  that  is,  they  have  to 
communicate with an end-user, with the result that some (but not necessarily all)  application 
processes must be geared to the pace of the end-user. An end-user will enter commands and data 
on a screen, select among options, etc., and results will be displayed on the screen. Usually these 
events  alternate,  but  some  displays  occur  unexpectedly,  and  the  user  must  also  be  able  to 
interrupt processes or switch to other activities. Hardware and software environments vary: the 
screens may range from "dumb" terminals to graphics terminals to programmable work-stations 
with powerful logic capabilities; terminals may be connected in various ways to the host; and 
finally the host may be running different software platforms (e.g. IBM's CP/CMS, TSO, IMS or 
CICS), or 4GLs based on them.  While it is hard to generalize between all these variations, we 
can say with some assurance that there will always be a need for a program to be able to present 
text,  numeric  and  alphameric  information  to  a  screen,  and  for  the  user  to  be  able  to  send 
commands  and  data  to  the  computer.  There  is  also  a  need  to  format  a  screen,  including 
specification of fixed or user-specifiable information on one or more screen and window layouts. 
The user and program must further be able to select among different such layouts. 

In Chapter 14, I talked about "loop"-type networks supporting one interactive user (as in the IBM 
TSO and CMS environments), and how this changes when we move to multi-user environments 
such as IBM's IMS/DC (of course, TSO and CMS support multiple users, but in their case a 
whole program is dedicated to a single user,  while an IMS/DC program supports a series of 
different users one at a time). In what follows, we shall go into more detail on IMS/DC, and also 
concentrate  on  one  type  of  screen,  the  3270  (without  graphics  capability).  I  believe  these 
concepts generalize well to other environments, even to the new GUI-style interfaces with drag 
'n' drop interaction (by assigning a different process to each window), but this chapter would get 
much too long if we tried to cover even just the IBM host environments! 

First I want to describe at a high level how TSO (or CMS), CICS and IMS/DC differ. By the 
way, IMS/DC is now IMS/TM, but I will continue to use the older term. The basic problem they 
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all address in different ways is how to trigger program activity as a result of a user action on a 
screen or keyboard. In TSO (or CMS), the user has a whole program dedicated to his or her use, 
which multithreads with other such programs. During his or her "think-time", the program has to 
wait, but the other parallel programs (either supporting other users, or running batch) can use the 
available CPU time. 

CICS and IMS/DC are  both  very popular  for  IBM hosts,  and they are both delivering  very 
respectable  transaction  rates.  Traditionally,  CICS  has  had  lower  overhead  but  provided  less 
protection between users. These distinctions may be breaking down as these systems evolve. In 
the case of CICS, CICS runs a number of parallel tasks. When one of these tasks is triggered by a 
user's action, it executes the appropriate logic. After output has been generated, the task can be 
suspended ("conversational" processing),  or  can terminate  after user-oriented information has 
been saved ("non-conversational"). If all code was conversational, a CICS program could only 
support as many users as there are tasks, so this mode is not recommended - especially since 
human think-times are long compared with the CPU time required by the machine. CICS, like all 
FBP implementations so far, can suspend a task at any API call. In fact, allowing tasks to be 
suspended  elsewhere  than at  an  API  call  would  make  FBP (and CICS)  programming  much 
harder, so it is unlikely that this will change. I have always felt that the internal logic of CICS is 
so similar to that of FBP that a hybrid system combining ideas from both might be extremely 
interesting. 

IMS/DC also  uses  a  number  of  parallel  programs,  but,  unlike  TSO,  each  program services 
multiple users, one after the other - each user "occupies" a program from the time a screen or 
keyboard action takes place until the response has been sent back to the screen, at which point the 
program is free to service a different user. In fact an IMS program cannot wait for the user to 
finish thinking - if there is no work waiting to be done, it just terminates. So IMS/DC cannot use 
CICS's "conversational" approach - while it also uses the term "conversational", it has a different 
meaning.  Also  IMS  programs  run  in  separate  regions,  so  they  can  interrupt  each  other 
preemptively; whereas CICS tasks can only lose control at an API call. 

IMS transactions are driven from a "message queue".  Each message was added to the queue as a 
result  of  a  user  taking  some action,  such  as  hitting  ENTER,  a  Program Attention  key or  a 
Program Function key at his or her terminal. IBM 327x terminals are "buffered", meaning that 
information is accumulated on the screen until one of the above keys is hit, at which time all 
modified data is sent to the host, together with an indication of what action was taken by the user, 
and where on the screen the cursor was. All this information is collected and put into an "input 
message", which is then placed on the message queue.  In addition each message contains an 8-
character code indicating which processing is to be applied to this data. Very often it is used to 
identify the screen which was being displayed when the interrupt occurred, allowing the program 
to select the processing. This code is called the "transaction ID". 

The transaction ID is used by IMS to select, based on rules the installation has specified, which 
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of  a  set  of  programs,  called  "message-processing  programs"  (MPPs),  is  to  service  this 
transaction.  The MPP may already be running: if not, it will be started in an available "message-
processing region" (MPR). 

When program logic decides that a new screen is to be displayed on the terminal, an "output 
message" is put on the message queue by the transaction, containing the data to be displayed and 
the position at which the cursor is to be positioned.  The program usually specifies which screen 
layout is to be used for this. 

An MPP processes serially  the transactions it  is  supposed to handle.  It  continues picking its 
transactions off the message queue and putting output messages onto the queue until one of the 
following occurs: 

• there are no more transactions waiting 

• a higher priority transaction needs the region 

• it reaches a predefined limit called the "program limit count" (PLC). 

When one of these occurs, the MPP's command to get the next transaction fails with a specific 
return code ('QC'). 

Now note that the MPP serially processes transactions from different users, rather than being 
dedicated to one user. Also a given user's interaction with the host (main-frame computer) will 
jump about from one screen to another, and therefore from one MPP to another, and therefore 
from one message-processing region (MPR) to another. This means that any information which 
has to be carried from one screen of such a "conversation" to another has to be held on disk, or in 
a storage area which is reserved for that one user (IMS provides such an area, which is called the 
"Scratch-Pad Area",  or SPA).  Some applications also use  the message itself  for this kind of 
information, as not all the message information actually has to be displayed on the screen. 

While there are a number of other types of IMS/DC application, such as WFI, pseudo-WFI, etc., 
the above sketch will suffice to give a background for building on-line applications using FBP. 

Note that the term "transaction" in IMS is quite ambiguous - we will try to avoid using it since 
the terms "MPP" and "input message" cover most of its meanings. One other usage of the term 
"transaction" means the processing within  an MPP which runs  from the reading of  an input 
message to the writing out of an output message. This processing is dedicated to a single user and 
hence it is important that no data belonging to another user be picked up inadvertently,  even 
though a given MPP may service a number of users before it terminates. 

An interactive application differs from a batch one primarily in that some (not necessarily all) of 
its logic is synchronized to the speed of the user.  If you visualize an interactive application as an 
alternation of screens and processes, the screens can themselves be treated as processes whose 
job is  to convert  between internal  and external  data formats.  Of course,  these processes also 
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allow selections to be made from menus and lists, plus requests for certain general services, such 
as Help or Return to Previous Screen. 

Let us use a very simple application consisting of 3 screens as an example. Diagramming the 
flow between screens, we get: 

 
where S01, S02 and S03 are screens
      A, B and E represent user actions
      L1A, L1B, L1E, L2E and L3E represent logic

(user actions are commonly either PF keys being pressed or commands being entered) 

Figure 19.1 

The next stage is to convert all the screen blocks to processes and add in the logic processes (plus 
one to start the network). This gives us the following diagram: 
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where S01, S02 and S03 are screen processes
      A, B and E represent user actions,
      L1A, L1B, L1E, L2E and L3E represent logic processes 
Figure 19.2

In the above diagram, the screen processes must output the IP streams which the logic processes 
expect,  and  logic  processes  must  output  the  streams  which  the  screen  processes  expect.  In 
designing the application, the designer must coordinate the screen designs, IP streams and logic 
processes. 

There is another consideration: a typical application may have quite a few different screens and 
expert users increasingly want to be able to jump from any screen to any other, without being 
required to go up and down through menus. In other words, the network becomes more and more 
thoroughly interconnected. Through all of this, the designer must make sure that each screen 
process gets the data it expects.  Just as with batch applications,  it is best for the designer to 
concentrate on the data flows, rather than on the processes. 

Now, if the network structure reflects the possible paths between the screens, it is clear that it 
will become more and more complicated as the connectedness between screens increases.  You 
could eventually get a network where every process is connected to every other process, so that 
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the network no longer provides any assistance to the developer in understanding what is going 
on. Instead of using the network to define the flow between screens and logic, we have found that 
it is much better to do this with a table. This table specifies the screens and processes resulting 
from each possible combination of screen displayed and user action taken. This will allow the 
application  to  be  "grown"  in  a  natural  way,  without  a  corresponding  increase  in  network 
complexity. The network shape arising from this approach actually becomes simpler, as we will 
have moved much of the complexity into a table. The network topology will now usually be a 
loop, comprising processes to display a screen, analyze the user action, trigger any processes, 
select another screen, and so on. 

In conventional batch programming using data flow, the flow of data, and therefore the sequence 
of  data  transformations,  is  predominantly  in  one  direction  across  the  network.  This  kind  of 
topology arises  from the  fact  that  there  is  no  real-time  interaction  with  human beings.  The 
program is started by means of JCL or by an operator command and runs until all the data has 
been processed. 

Increasingly,  however, we require programs to interface to human beings, and therefore there 
will be at least one process in a network that is "paced" to the speed of the human interface.  In a 
batch FBP network, as we have seen above, all of the processes run asynchronously. In an on-
line application, a network topology that appears in a number of situations in one-user operating 
systems, such as CMS and TSO, is the "loop-type" network. We talked about loop-type networks 
in Chapter 14, so you are already familiar with how these work. 

Here is a diagram of such a network: 
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where SM  is a Screen Manager
      ST  starts the network as a whole
      the dotted line represents logic processes
Figure 19.3

In this network, there is one process, the Screen Manager, which controls the user's screen. An IP 
(or group of IPs), conceptually similar to the token in a token-ring type of LAN, travels around 
the  network  triggering  processes  to  execute.  The  bracket  IPs  provide  a  convenient  way  of 
grouping IPs for this kind of function - typically, we use the first IP of each substream for such 
information as screen name, name of key struck, position of cursor, etc., and the remaining IPs, if 
any,  for the data.  When the substream arrives at  the Screen Manager process,  it  triggers the 
display of data on the screen, waits at that process until the user responds, then proceeds to the 
next process in the loop. The data IPs, if any, will hold the data to be displayed on the screen, and 
will receive any data that the user enters on the screen. The first, or "request", IP can also contain 
an indication of which key was pressed to tell the Screen Manager that the user has responded 
(e.g. function key, enter, etc.), where the cursor is and perhaps also which fields were modified 
(this information is often of interest to the host application). 

The next process in the network will usually be a process which analyzes the response and takes 
appropriate actions, perhaps routing the request IP (with its accompanying data IPs) to a process 
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which will do the appropriate application processing. 

Eventually  the  application logic  will  request  that  another  screen (or  the  same one again)  be 
displayed, and the request IP will be sent back to the Screen Manager to achieve this.  This then 
is a very standard topology that you will often run into when building interactive applications in 
one-user environments. 

We  now  have  to  convert  this  type  of  logic  into  IMS  transactions.  We  shall  see  that  IMS 
transactions are also loops, but the function of the loop is slightly different. 

We have seen above how a data IP can be associated with a request IP and then act as a carrier 
for the screen's variable data.  If we temporarily ignore the request IP and simply picture the data 
IP triggering a screen display, we see that this is very much the way an IMS transaction asks for a 
screen to be displayed: an IMS "output message" containing the data to be displayed is generated 
by the program and is  sent to  the message queue.  This  signals  IMS/DC to display a screen 
(conventional programs specify the screen name using a call).  When the user responds, IMS/DC 
places an "input message" on the message queue. Soon afterwards, a transaction is triggered and 
the transaction program code, the MPP, gets the message from the message queue and processes 
it. 

Let us take as an example the screen flow that we used above. Look at Figure 19.2, remembering 
that the boxes represent screens, not processes. Each screen in this diagram, plus its downstream 
logic,  now potentially becomes a separate transaction.  We have to convert the above screen 
diagram into IMS transactions by "cleaving" each box representing a screen into two pieces: an 
"output" piece and an "input" piece. This leaves us with a number of "batch-like" networks, with 
a screen input process on the left, and one or more screen output processes on the right. It is 
IMS/DC which provides the linkage between them. These screen handling processes appear to 
the transactions just the way File I/O appears to a batch program. 

Another way of thinking about Figure 19.2 is that each "screen box" in this diagram is in fact a 
process which writes to the user's terminal, waits for a response and then sends the input from the 
terminal onwards (it is the "complement" of a logic process). Such a process can thus be split into 
two processes: one to put out to the terminal and one to get from the terminal. In between these 
two functions, it is too expensive in the IMS environment (unlike one-user environments like 
CMS and TSO) to have the whole region wait during the user's "think-time", so we essentially 
terminate the section of code processing that user, and restart another transaction when he or she 
finishes  thinking  and  takes  some  action.  (As  we  said  above,  ending  a  transaction  does  not 
necessarily mean ending the MPP).  The result is a set of "batch-like" networks, with Screen 
Input at one end and Screen Output at the other. 

The following diagram shows a single "screen process" being split into separate output and input 
processes: 
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where SO  (Screen Out) puts information out to screen
      SI  (Screen In)  gets information back from screen
Figure 19.4

If you look at the "loop" in the above diagram, you see that it is topologically a straight line 
starting  with  SI  and ending  with  SO.  Each  of  these  "opened up"  loops  becomes  a  separate 
message processing transaction. 

Here is a diagram of a number of IMS transactions resulting from cutting up the screen flow 
shown in the above example: 
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where SI  (Screen In)  handles IMS input messages
      SO  (Screen Out) handles IMS output messages
      R   is a Selector which decides whether L1A, L1B or L1E
          is to be given control
      L1A, L1B, L1E, L2E and L3E are instances of the logic
          "legs" in the previous diagram
Figure 19.5

In this diagram I converted the application logic into a network structure. Clearly, this would not 
result  in  a very maintainable application -  as I  said above, it  is  much better  to use a  single 
network, and encode this kind of information in tables. Just as, in an earlier chapter, we did not 
want to encode the number of Canadian provinces into the network structure, we should avoid 
imbedding the screen flow into the network structure. 

To keep the structure flexible, we will need to hold the output screen name or transaction ID in 
the "request IP", and allow this to trigger the display function. This allows us to have a single 
instance  of  SO which  is  completely  general,  and  will  dramatically  simplify  the  transaction 
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networks. In the IMS/DC environment, SO will use this information to select the next screen to 
be displayed. Of course, the data being presented to SO must match the specified screen, but this 
is easy to control because the screen name will be in the same substream as, and followed by, the 
data that relates to it. 

As I said above, the loop topology turns up again, but with a slight twist, when we actually try to 
build an MPP using FBP. The reason for this is that MPPs are normally coded so that they check 
(using an IMS "get" call) if there are any more messages waiting to be processed before they 
close down, and it is this check which provides the "sync point" which causes the screen to be 
displayed and files to be updated. It is not essential for the MPP network to "loop back" but in 
this  case  various  expensive  types  of  overhead  would  have  to  be  repeated  for  every  single 
message. Accordingly, MPPs are usually written so that they loop back to check for more input. 
Remember, each time through the loop, the MPP services a different user. On the face of it, it 
would seem that a straight left-to-right topology would be adequate for an MPP, but this will 
likely result in a second message being read before the previous message has been displayed, and 
the above-mentioned function of the "get" as a sync point absolutely requires that inputting a 
message not be allowed to happen before any data base records have been modified and the 
output message has been written - hence the reemergence of the familiar loop-type topology. 

The FBP network for an MPP now looks like this: 
 

where SI    is a process which handles IMS input messages
      SO    is a process which handles IMS output messages
      ST    starts the network
     'logic' represents application logic
     'exit'  indicates that SI may bring down the whole
          network if there are no more messages waiting
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          or the PLC has been reached
Figure 19.6

Note that, unlike the CMS or TSO case, each iteration around the loop may involve a different 
user, so the discipline of reentrant coding is particularly important here. 

In DFDM we developed components for the functions shown as ST,  SI and SO, although these 
were not part of the DFDM system as it was marketed. These provided an environment which 
allowed the intervening logic to be coded as though it were simply processing records from a file. 
In addition, SI and SO collaborated to support a single message format only for a given screen, 
instead of two separate ones (input and output) as presently required in IMS. To explain this a 
little further: while an IMS output format requires all variable fields which may be displayed on 
the corresponding screen, the input message format only contains the fields which the user may 
change. People often get around this by telling IMS that even the protected fields have been 
modified (the screen has an attribute which lets you force the "modified" flag on for a field), but 
this results in more data traffic between host and terminal than is necessary. Instead, let's make 
SO save  the  output  message  in  the  SPA or  in  a  user  data  base,  and change  SI  to  use  that 
information both to create a "complete" message, and also to report on which fields have actually 
been modified. We now have a pair of collaborating components which make the job of handling 
IMS messages significantly easier! 

Analogously to the paradigm shift we saw in batch, FBP also forces a shift from concentrating on 
screen layouts to concentrating on IP layouts. For a given screen in IMS, there will in general be 
three layouts: the "in-storage" format, the input message and the output message. However, it is 
possible to combine these down to two or even one layout, by using the MFS MFLD macros to 
act as a "bridge". Designers of IMS applications don't generally realize that IMS MFS allows the 
sequence of fields on the screen to be quite different from the sequence of fields within the area 
in  storage  containing  the  data.  This  will  also  allow the  same data  IP  to  drive  a  number  of 
different screen layouts, which is a useful characteristic in on-line systems. One might also, for 
example,  want  to  use  a  single  data  IP  and  show  different  parts  of  it,  depending  on  the 
authorization level of the user. 

One last topic that is relevant to the design of on-line applications in IMS/DC is that of storage of 
information within a "conversation" (the suite of transactions interacting with a single user to do 
a job of work). I mentioned above that we can use the message, Scratchpad Area (SPA) or disk 
storage. The problem with the SPA from a modularity point of view, is that information in it has 
to be accessed by offset - i.e. one declares a structure to describe the SPA, and all transactions 
participating in a conversation have to use the same layout. So you essentially have an entity, the 
"conversation" (not otherwise recognized by IMS), which is tied to the SPA layout. If you then 
want to share transactions between conversations, you constrain them all to share the same SPA 
layout. This is another form of the "global" problem. Since FBP forces modularity, we have to 
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find a way around globals, and we did in one of our applications this by storing data associatively 
in a storage area associated with the user - initially the SPA and later a special data base) - using 
data areas chained into a list and identified by 8-character names. We defined three components 
[reusable code modules], which could be used at will in the application networks. We could call 
these Input from Area, Output to Area, and Free Area. When we wanted to store a piece of data 
for later use, we simply sent it with an identifying name to an occurrence of an Output to Area 
component, which either replaced the data in an existing area of the same name, or created a new 
area.  Input from Area was used to retrieve data, given an area name. The interesting thing was 
that  (apart  from  Free  Area)  these  behaved  exactly  like  I/O components,  and allowed  us  to 
maintain the "mini-batch" metaphor in the logic processing within a transaction. 

There is (was) also another breakdown of modularity in IMS: namely the layout of the PCB List. 
Originally, IMS and transaction code had to agree on the sequence of the PCBs in the list, and the 
only way code could reference a PCB was by its position, so every subroutine in a transaction 
had  to  "know"  the  same  PCB  List  layout.  Again  this  made  sharing  subroutines  between 
transactions very difficult. To solve this, DFDM provided a "locate PCB" function as a basic 
service,  allowing  PCBs  to  be  located  using  the  DBD name.  IBM has  since  recognized  this 
problem in IMS, and now provides the AIBTDLI interface, which allows PCBs to be referenced 
by name (you will remember that FBP ports went through a similar evolution from numbers to 
names). 

One last topic I want to touch on is DB2 - it is appropriate to discuss it in a chapter on designing 
online systems. The relational paradigm is very powerful,  and is very compatible with FBP's 
concepts - in FBP it is very straightforward to specify an SQL request in a component and then 
have it turn the rows of the resulting table into a stream of IPs. We have seen in Chapter 11 how 
we can attach information about "nullness" to IPs - this is a natural match with the "null" concept 
of  DB2.  We  can  even  use  the  DESCRIBE  facility  of  DB2  to  generate  IP  descriptors 
automatically. 

While in many ways DB2 is a marvellous system, it  also suffers from what I have called a 
breakdown of  modularity.  In  hindsight,  it  would have been better  if  its  interfaces  had been 
designed to be used in black boxes - unfortunately its designers did not foresee the need to use 
DB2 inside asynchronously executing black boxes, but we have found ways to live with this 
omission, so overall the two systems work pretty well together! 

DB2 differs from most computation-oriented programming languages in that any components 
which  contain  SQL statements  have  to  be  precompiled  as  well  as  compiled,  resulting  in  a 
separate type of output called a Data Base Request Module (DBRM). DBRMs are combined or 
"bound" (much as components are link edited) into what is called a "plan", which is required at 
run-time. One of the really nice things about using DB2 in an FBP environment is that the whole 
network only needs to be rebound when a coroutine issuing SQL statements has to be recompiled 
(re-precompiled, actually). If you therefore write all your Static SQL components and compile 
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and bind them into a "plan" early in the development cycle, you can add logic and other functions 
incrementally without ever having to rebind your application plan. 

The major problem we ran into was that the DB2 "cursor" (the "pointer" which programs running 
under DB2 use to step through a table) is not a variable, so it cannot be moved around or passed 
to  subroutines.  So you  can't  do a  SELECT in  one  component,  and the  related  UPDATE in 
another one. In FBP we can get around this problem by using a single component to do both 
actions, either by using two separate input ports or by using a single input port with two different 
types of request IP. 

The other problem is that there is only one DBRM for a component per task, so only one cursor, 
so a single component doing cursor-type SELECTs cannot run asynchronously with itself in the 
same task, unless you give it multiple cursors (we did that experimentally - if the component 
needs a cursor, and finds the current one busy, it just grabs the next one). Alternatively, we could 
eventually  develop means  to  automatically  generate  the  code for  this  kind of  component  as 
required. Dynamic SQL does not suffer from this limitation, but it provides weaker security, so 
most installations prefer to use Static SQL. 

Last, but probably not least, when preparing a component to run under DB2, you have to specify 
at link-edit time whether the program is to run under TSO or IMS. This means that a component 
cannot be "ported" from TSO to IMS or vice versa in load module form unless it is relinked at its 
destination. 

I'd like to close this chapter by addressing an argument which you may hear from time to time - 
namely  that  batch  is  dead,  and  that  everything  can  now  be  done  on-line  and  therefore 
synchronously. As you have been reading the foregoing pages, you may have been wondering 
what the relevance of data streams and components like Split and Collate is to today's interactive 
applications. For a while I also believed that FBP was less relevant to interactive systems than to 
batch, but as we built more and more on-line systems, we found that the benefits of reusability 
and configurability are just as relevant to on-line as they are to batch, if not more so. In fact, by 
removing many of the old distinctions between on-line and batch,  not only do programmers 
move more easily between these different environments, but we have found that code can be 
shared by batch and on-line programs, allowing large parts of the logic to be tested in whatever 
mode the developer finds most convenient. We have even seen cases where data was validated in 
batch using the same edit routines which would eventually handle it in the on-line environment. 
Once you remove the rigid distinction between batch and on-line, you find that batch is just a 
way of managing the cost of certain overheads, just as it is in factory, and therefore it makes a lot 
of  sense  to  have  systems  which  combine  both  batch  and  on-line.  If  you  take  into  account 
distributed and client-server systems, you will see that there are significant advantages to having 
a single paradigm which provides a consistent view across all these different environments. 
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[This chapter has been changed a bit, to reflect changes in the way automatic ports are handled  
in JavaFBP and C#FBP.]
We will start off this chapter by talking about how to synchronize events in an FBP application. 
After having stressed the advantages of asynchronism so heavily, it may seem strange to have to 
talk about strategies to control it, but there are times when you simply have to control the timing 
of events precisely, so it must be possible to do this. It is just that we don't believe in forcing 
synchronization where it isn't required. We have already seen various kinds of synchronization, 
such  as  loop-type  networks  and  composites,  so  let  us  look  at  synchronization  a  bit  more 
generally. 

Typically we synchronize something in a process to an event elsewhere in the processing logic, 
or to an event in the outside world. Only certain events in certain processes need this treatment - 
it  would be against the philosophy of FBP to attempt to synchronize a whole network. That 
belongs to the old thinking - in fact, writers on distributed programming often show a certain 
nervousness  about  not  knowing  exactly  when  things  will  occur.  It  used  to  be  considered 
necessary to synchronize commits on two different systems, but we are beginning to realize that 
it may not be possible to scale up this philosophy across an entire network in an enterprise. In 
fact, IBM has recently announced a set of Messaging and Queuing products [MQSeries] which 
provide asynchronous bridging between all  sorts of different hardware and software. A basic 
assumption of this software is that applications cannot, and should not, try to enforce events to be 
synchronized across multiple systems. 

The most basic kind of synchronization is synchronizing a point in the logic of a process to a 
point event in time. In IBM's MVS, this is implemented using POST/WAIT logic. This involves 
a thing called an "event", which may be in one of three states: 

• inactive 

- 221 -



Chap. XX: Synchronization and Checkpoints 

• being waited on 

• completed 

Only one process can wait on an event at a time, but any process that knows about it may "post" 
it, thereby changing it to completed. If a process issues a "wait" when the event is inactive, it is 
suspended  on  that  event,  and  the  event  is  marked  appropriately;  if  the  event  has  already 
completed, the process that needed to know about the event just carries on executing. MVS uses 
this concept for its "basic" I/O: a process starts an asynchronous read or write channel program 
going and then continues executing. When, some time later, it needs to know whether the request 
has completed, it issues a "wait", and either is suspended or resumes execution, depending on 
whether the asynchronous I/O routine has posted the event complete or not. Thereafter the event 
would show complete until it is set back to one of the other states, presumably by the requesting 
process. All dialects of FBP except THREADS [this was written before JavaFBP and C#FBP - 
they do not have this facility either] have implemented an event-type wait service to suspend a 
single process. A nice feature of the FBP environment from a performance point of view  is that 
one or more processes can be suspended on events without suspending the whole application. 
The application as a whole is only suspended if no process can proceed and at least one process is 
waiting on an event (if there are no processes waiting on events, you've got a deadlock). We 
found  that  applications  with  many  I/O  processes  often  ran  faster  than  if  they  were  coded 
conventionally using buffered I/O because, in control flow [non-FBP] coding, only one I/O is 
logically being executed at a time, so if it suspends, the whole application hangs. 

Instead of a point event, we might instead have to synchronize an application to a time of day 
clock, e.g. "run this job at 5:00 p.m." All you need is a process which sends out an IP at 5:00 
p.m., every day (or you could arrange for it to send out IPs every hour on the hour, or every five 
minutes, or every 20 seconds). Such a process can act as a clock, just as the clock in a computer 
sends  out  pulses  on  a  regular  schedule.  These  IPs  can then  be  used  to  start  or  delay  other 
processes. 

Similarly to the "wait on event" service available to its components, DFDM also had the ability 
to suspend a process for a specified amount of time or until a particular time of day. This used the 
facility  provided by MVS to  post  an  event  at  a  particular  time.  In  the  case  of  DFDM, this 
function was only provided as an off the shelf component: it could either delay incoming IPs by a 
certain  amount  of time,  or generate  a  stream of  IPs  at  given intervals.  Where multiple  time 
intervals were required, you could have as many of these processes as you liked in a network 
(DFDM kept track of which one was due to go off next). 

Another kind of synchronization referred to already is the need to delay something until a process 
has completed. In DFDM, any unused output port would automatically present end of data to its 
downstream process when it closed down. In THREADS the same thing applies, or you can use 
automatic ports if you want to automatically generate a signal IP when a process deactivates. [In 
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JavaFBP and C#FBP, only the latter  technique is available,  with the closedown signal being 
generated at termination, not deactivation time.]  Imagine that you want to delay a process until 
two others have completed. You have already run into Concatenate - this provides a simple way 
of doing this, as in the following diagram. 

Figure 20.1 

In this figure,  processes A and B close their automatic ports when they terminate.  CONCAT will 
not close down until both A and B have terminated, so the end of data output by CONCAT (when 
it closes down) can be used to delay process C. 

Client/server relationships are a good way to solve a particular synchronization problem: suppose 
you  have a  stream of  transactions  that  all  access  the  same data  base.  If  you  allowed  every 
transaction to run in parallel, and your programs were managing their own data, you would have 
to  provide  some  kind  of  enqueue/dequeue  mechanism to  ensure  that  different  threads  were 
blocked from executing at the same time when this might cause problems. A simpler technique is 
to make one process a server and only allow that process to access the data base. This is in fact a 
common type of encapsulation because it allows the server to control what it will accept and 
when. We described this kind of approach in Chapter 15. The disadvantage of this arrangement, 
of  course,  is  that  you  are  serializing  the data  handling part  of  the  transactions,  so this  may 
become  a  bottle-neck,  but  this  is  a  trade-off  that  should  be  the  decision  of  the  application 
designer. It's even better if only a small proportion of the transactions need the server's services, 
or you have several data bases, each with its own server (like the different stations in a cafeteria, 
or the tellers in a bank). One other possibility is to use some kind of batch approach, especially in 
cases where the hit-rate (transactions per data record) is fairly high. After all, batching is just a 
technique for lowering the per-item cost at the cost of increased start-up and close-down costs. 
Since a server "batches up" its incoming transactions, you may be able to preprocess them to 
improve performance. 
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Another kind of synchronization is built into the "dynamic subnet" mechanism of DFDM. We 
said before that a composite component monitors the processes within it.  In particular, if the 
composite is substream-sensitive, it handles exactly one substream from every input port on each 
activation. These input ports are therefore also synchronized, so you can visualize the composite 
component advancing, one substream at a time, in parallel, across all of its input streams. 

Of course, most often such substream-sensitive composite components only have one input port, 
in which case they process one substream per activation. We have described in some detail how 
they work in the chapter on Composite Components (Chapter 7). Now we get to use them on 
something that seems to give programmers a lot of trouble. 

Interactive systems and systems which share data bases have to wrestle with the problem of 
checkpointing. In the old days, checkpointing just meant saving everything about the state of a 
program, and restart meant loading it all back in and resuming execution. Well, for one thing, a 
program had to come back to the same location and this might not be available. It became even 
harder as systems were distributed across multiple tasks or even multiple systems. In FBP, the 
states of the processes aren't in lock-step any more, so it becomes harder still! In general, as the 
environment becomes more complex, checkpointing needs more information to be provided by 
the programmer. However, we would very much like to be able to write a general checkpoint 
component which we could use across a wide range of applications, and we feel it should be 
possible with FBP. In the following paragraphs I will describe an approach which seems to fit the 
requirements. Rather than trying to create an enormously intelligent and complex module, our 
approach  is  to  provide  a  series  of  points  in  time  where  as  many  processes  as  possible  are 
quiesced, so that they do not require much data to be saved about them. 

Consider three scenarios: 

a)  IMS  MPPs  take  a  checkpoint  every  time  they  go  back  to  the  input  queue  for  another 
transaction. This "commits" the updates, and unlocks them so other users can access them. If the 
system crashes before the checkpoint, the updates have logically not been done, and IMS has to 
ensure that is logically true (even if it has happened physically). 

b)  a  long-running batch application  should checkpoint  about  every half  an hour,  so  that  the 
amount of the job that has to be rerun is never more than half an hour's worth (this applies both to 
programs updating data bases and to batch jobs using ordinary sequential files). 

c) an IMS BMP should checkpoint much more frequently - perhaps as often as every few seconds 
- as online users of the same data may become hung waiting for the BMP to release data which 
they need. 

The common idea in all these cases is that the system saves the logical state of the system, so that 
it can be restored if required. The information needed to restore a process to an earlier state is 
often called its state data. On the other hand, the less data we can get away with saving, the less 
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time checkpoint will take, and the faster any restart can occur if it is needed. 

Since checkpointing needs a  stable base with as little  going on as possible,  we will  have to 
quiesce as many of the processes in our application as possible, and have as few IPs in flight 
between processes as possible. The more we can do this, the less state data we have to save. 
Here's an analogy: a number of people are swimming in a pool, and a member of the staff decides 
it's time to put chlorine into it. Since this chemical would be highly irritating to the swimmers, 
the first thing to do is to get them all out of the water. So the staff member blows the whistle - 
s/he now has  to  wait  until  everyone is  out  of  the water,  which might  take  a  little  while  as 
everyone has to finish what they are doing. She now puts the chlorine in, waits some amount of 
time and then blows the whistle again to indicate that it is safe to go back in. 

Let's reuse a diagram from Chapter 7: 

Figure 20.2 

This shows a substream-sensitive composite  B,  containing two processes  C and  D.  You will 
remember that, provided the data coming from A is grouped into substreams using bracket IPs, 
the  inside  of  B  will  behave  like  a  little  batch  job,  starting  up  and  closing  down  for  every 
incoming substream. The composite deactivates each time its inside processes close down, and it 
restarts them when the next IP arrives from outside. During the times when C and D have closed 
down,  there  will  be  no  IPs  in  flight,  and  C and  D will  not  even  have any internal  storage 
allocated. The composite itself will be inactive. This then provides a rather neat mechanism for 
"getting everyone out of the water", because, remember, processes cannot be closed down until 
they themselves decide to allow it. Not only that, but we can ensure that the next substream isn't 
admitted  until  the  chlorine  has  had  time  to  dissolve!  Just  provide  the  composite  with  an 
automatic port, which will prevent it from inputting the next substream until a signal arrives. The 
diagram might now look something like this: 
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Figure 20.3 

I am now going to suggest how we might modify this diagram, using a facility that has not yet 
been implemented, but should be very straight-forward.  Let us modify the diagram to send a 
signal  automatically  every  time  all  the  components  within  B  have  terminated,  using  an 
"automatic" port called *SUBEND.  When this happens, the subnet will send a null packet to the 
*SUBEND port,  which  signals  CHKPT to  run.   CHKPT  then  sends  the  signal  onwards  to 
control  a  component  called  SSGATE,  which  lets  the  composite  know it  can  accept  another 
substream.  SSGATE is a very simple component, and simply releases one substream at a time, 
each time it receives a signal at its CONTROL port.   

There is another idea which is suggested by the swimming-pool analogy: a swimmer who will 
not  get  out  of  the  water  will  hold  up the  whole  process!  Remember  the  term "periodicity", 
referring to whether a component is a "looper" or a "non-looper" - non-loopers are quiesced 
between every invocation, so the more often a component gives up control, the more flexible it 
will be from the point of view of fitting into the checkpoint process. 

Since we are using the fact that B's regular (non-automatic) input port is substream-sensitive, we 
now have to get delimiters into its input stream to make this whole thing work. It may seem 
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strange to use external markers to control what is going on inside the swimming pool, but this is 
really only a technique for dividing up the incoming stream into well-defined groups - and we 
want  all the processes inside the composite to be able to close down. So what we do is insert 
delimiters into the incoming stream of IPs at the points where we want checkpoints to occur. 

Now, there are two main criteria for when to take checkpoints: amount of I/O and time. Since in 
IMS a checkpoint will unlock changed records, we want to take checkpoints more frequently if 
there  has  been  more  update  activity.  Conversely,  if  the  activity  is  low,  we  want  to  take 
checkpoints occasionally anyway to make sure that other programs are not hung for too long 
waiting for records to be unlocked. How can we drive checkpoints on both these criteria? Well, a 
close approximation to the amount of I/O is to count transactions, and do a checkpoint after every 
'n' transactions, where 'n' is specifiable from outside. In addition, we want to trigger a checkpoint 
if 't' seconds or minutes have elapsed without a checkpoint. 

Let's do the transaction counting first: we can just have a Count process which inserts a close 
bracket/open bracket pair every time the count of input IPs reaches a number 'n' (obtained from 
the option port). This Count process also has to send out an open bracket at the beginning and a 
close bracket at the end. Schematically: 

 

Figure 20.4 

We'll call this component CBG for Count-Based Grouping. OPT can specify 'n'; OUT passes on 
the incoming IPs divided into substreams. So if the input to CBG is 
a b c d e f g h i j k l ...

Figure 20.5 

and 'n' is set to 5, the output looks like this: 
(a b c d e) (f g h i j) (k l ...  

Figure 20.6 

This also works if the input consists of substreams, rather than just transactions. In general, the 
count  should  apply  to  the  highest  level  substreams  (we  have  seen  before  that  we  can  treat 
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individual IPs as trivial substreams) - if we were to interrupt a substream to take a checkpoint, we 
would have a much harder time restarting from where we left off. 

But now suppose that, during the "quiet" times, we decide that we also want to insert a bracket 
pair if 't'  seconds or minutes have elapsed without a checkpoint.  Let's take a "clock" process 
referred to at the beginning of the chapter, which generates an IP on every clock tick (specifying 
the interval via an options port), and merge its output with the input of CBG, as follows: 

 

Figure 20.7 

where  CLOCK generates "clock tick" IPs at regular intervals, which are then merged with the 
original  input IPs on a first  come,  first  served basis.  If  the original  data stream consisted of 
substreams, we would need a more sophisticated merge process. 

The input stream to CBG now looks something like this: 
a b c t0 d e f g h i j t1 t2 k l t3 m t4 n o p q r t5 s ...
where tn represents a clock tick

Figure 20.8 

Now, the present FBP implementations do not guarantee that these clock ticks will ever get into 
this data stream unless there are simply no data IPs coming in. This is because we have always 
concentrated on making sure that all data is processed, but not when. And in fact this is probably 
adequate in this case, since we only care about the clock ticks when the frequency of incoming 
data IPs is low. To absolutely guarantee that the data IPs are inserted "in the right place", we 
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would need to implement something called "fair scheduling". I will not describe it here as it is 
well covered in the related literature. 

Clearly when there are fewer data IPs between a pair of clock ticks, e.g. between t1 and t2, there 
is less activity; when there are more IPs, there is more activity. So a simple algorithm might be to 
drive a checkpoint (insert back-to-back brackets) on every incoming clock tick, and also after 'n' 
IPs  following  the  last  clock  tick  IP.  We  might  want  to  fancy  this  up  a  bit,  by  preventing 
checkpoints if a previous one occurred within some minimum interval, but the simple algorithm 
should do fine for most purposes. A lot of applications use a time interval only, especially in 
batch applications, where the problem is to reduce the cost of reruns, rather than releasing locked 
records. 

Having identified our "bracket insertion" subnet (Figure 20.7), we can now insert it between A 
and SSGATE in Figure 20.2, as follows: 

 

Figure 20.9 
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We have talked about when to take checkpoints - we now need to discuss what should be saved 
when we take a checkpoint. Not only does state data have to be saved in case a restart is needed, 
but in some systems when you  take the checkpoint you lose your place - all your fingers get 
pulled out of the telephone book - so you have to be able to reposition them. So it makes sense to 
have as few processes active as possible at checkpoint time. In the example shown in Figure 
20.3, process A is active at checkpoint time - since it has no input connection, it won't terminate 
until it has generated all its output IPs. Neither CLOCK, CBG nor CHKPT have any internal state 
information which needs to be saved if a crash occurs. So this means that A is the only one which 
needs to be restartable, and there must be a way to make sure that it only generates IPs which 
have not been processed completely. If A saves state data on a data base or file, the checkpoint 
mechanism itself will ensure that the state data gets saved when it should, and rolled back when it 
should.  The  exception  to  this  is  that  data  IPs  which  caused  errors  should  probably  not  get 
reexecuted, so you may want to store information about them in a non-checkpointable store. 

Apart from such oddball cases, we can generalize across the different environments and say that 
A and processes like it should save their state data on a checkpointable backing store, be able to 
be restarted using it, and that this whole process should be as automatic as possible. Let's say that 
the state data has some recognizable empty state - then the state information on the backing store 
should start off in that empty state, it should be updated for each incoming IP or substream, and 
the program as a whole should reset the state data to empty when it finishes. This way  A can 
determine if a restart is required and, if so, at what point. Since it is a good idea to separate logic 
from I/O, we can split A as follows: 

 

Figure 20.10 

In this diagram, A only needs its state data at start time, so we can let RSD (Read State Data) start 
at beginning of program, and send the data to  A. Every time  A needs to store its state data, it 

- 230 -



Chap. XX: Synchronization and Checkpoints 

sends it to  WSD (Write State Data).  A very often needs to be notified that  WSD has stashed it 
away safely, so we provide a return path for this information. 

You may have noticed that A doesn't really need to save its state data until checkpoint time, but it 
doesn't know when CBG is going to decide a checkpoint is needed - this suggests that we might 
want to find a way to combine CBG or CHKPT with A's writing to backing store. The other thing 
we might do is have a general repository of state data, and let A request it, say, by providing its 
process name as a key. A solution which combines all these ideas is to use a process like the List 
Manager (described in the next chapter) to hold up-to-date state data in high speed memory, and 
then expand the function of CHKPT so it writes out this information to disk before requesting the 
checkpoint. We therefore replace WSD by a State Data Repository (call it SDR ). CHKPT has to 
request the state data from SDR, so there will be connections in both directions between these 
two processes. The final diagram might therefore look something like the following figure: 

 

Figure 20.11 
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where  there  are  two  connections  between  SDR and  CHKPT,  one  in  each  direction.  The 
connection from CHKPT to SDR is used to allow CHKPT to request its stored data; the reverse 
connection is for SDR to send the requested data. 

This is just a sketch, and even at that it's  starting to look a bit complicated,  but most of the 
components  can be off  the shelf,  so  they won't  have to programmed from scratch for every 
application. At this point, I'm sure you can all come up with better solutions which draw on your 
own expertise - the point is to design generalized utility components which encapsulate expertise, 
but  which  still  are  easy  for  other,  less  expert  programmers  to  use.  When  you  consider  the 
potential  cost  of reruns to your  shop, I'm sure you can see that  some standard,  easy to use, 
checkpointing approaches and components will be well worth the effort that goes into developing 
them and I have tried to show that FBP's powerful modularization capabilities will make that job 
much easier. 
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[This chapter talks mainly about our experience, pre-1994, using the FBP implementation called 
DFDM and IBM's  ISPF.  More  recently,  we  built  an  e-business  application  using  the  Java 
implementation of FBP - now called JavaFBP.  This was also essentially a loop-shaped network,  
but running across multiple servers (other chapters in my book talk about the ease of distributing 
FBP applications across physical networks).  Communication between the user and the servers  
was handled by IBM's MQSeries transporting XML messages. The application also needed to  
communicate with multiple "back-ends", which it did using either MQSeries or CORBA.]
In this chapter I am going to describe a general framework for interactive applications, showing a 
general structure and some component types which could help in the design of such applications. 

We  will  start  by  reproducing  Figure  19.3,  which  shows  an  IP  substream  travelling  from 
application logic to a screen manager process and back again, and showing how it can be fleshed 
out  to  produce  a  very  general  design  for  interactive  applications.  You  will  remember  the 
following diagram: 
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where SM  is a Screen Manager
      ST  starts the network as a whole
      the dotted line represents logic processes
Figure 21.1

You will remember that in IMS we had to split the process marked SM into SI and SO (Screen 
Input  and  Screen  Output  respectively),  and  change  the  function  of  the  "return  connection". 
However, for now, we will work with the above diagram, bearing in mind that it is very easy to 
convert it into one which will run in the IMS/DC environment. 

In what follows I will describe a system we built using a single generalized Screen Manager 
component (which I will refer to as ISM1 - ISPF Screen Manager 1) which used IBM's ISPF both 
to write to and read from a terminal, but the concepts are extremely general and can be applied to 
other screen management software. 

Although some systems allow a screen to be generated without using a program, it is simpler to 
assume that every application starts by putting up a "What do you want to do?" type screen. So 
assume that ST causes SM to output a menu screen. SM will have to have a place where the 
user's answer can be stored, so we can assume that ST sends out a substream consisting of at least 
three IPs: open bracket, "request" IP, zero or more data IPs and close bracket. The brackets are 
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needed so we can have a variable number of data IPs in the substream. The request IP will have, 
among other data, the name of the screen to be displayed. This substream then arrives at ISM1, 
which puts up a menu; the user enters a choice; the substream goes through the processing logic 
(which may change the contents of the IPs, or even add or remove IPs from the substream); and 
eventually we get back to ISM1 which puts up a new menu. 

Now let's look a bit more closely at ISM1. This component accepted an input substream, put any 
variable data into position on the screen using the data descriptors associated with the data, and 
waited for action on the part of the user. When that occurred, the modified data was placed back 
into the right places in the data IPs,  and the substream was then sent on to the next process 
downstream. ISPF identifies fields on the screen by name, and ISM1 used the field names from 
the descriptor to determine where to put each variable field. 

In  addition  to  this  substream,  referred  to  as  the  "fixed  substream",  ISM1 also  accepted  an 
additional,  optional substream, called the "repeating substream". The mental image supported 
was that the screen has a fixed part, normally describing one or a small number of individual 
entities, and an optional list. Thus we could show a person's family on the screen: his or her 
personal information, the spouse's information (a separate IP), these providing fairly complete 
information,  and zero or more children, showing just name, age and gender,  say.  If the user 
wanted more information on a  child,  he or  she could select  the child,  and get  a  full  screen 
devoted to that child, which might have further lists, e.g. education. One of the really neat things 
about  being able  to  use  IPs  in  this  way is  that  both  the  list  of  children and the  full  screen 
describing a single child can be driven by the same IP - we just decide how much information we 
are going to show from that IP. By the way, since each screen was built using two substreams, 
we bracketed them together so that ISM1 would think of them as a unit - so ISM1 was using a 
substream of substreams. 

Because field names are not unique in the repeating part of the screen, we could not use ISPF 
field names to control this part of the display, so we used a run-time table describing which fields 
from each IP went where in the repeating section. This had some interesting capabilities - ISM1 
allowed you to specify more than 1 line per repeating IP, and the developer could also specify 
whether a "select" column (simulating the 1-byte column ISPF provides for selecting one or more 
items from a list) was required or not. 

ISM1 also used the dynamic attributes which we talked about in Chapter 11 to keep track of 
which fields had been modified, and which were null. As I mentioned in that chapter, ISM1 also 
provided a special display for fields which had been "tagged" with error codes, and would let the 
user step through these errors using a reserved function key. ISM1 actually would not allow the 
user to go on to the next screen until all these "tags" had been removed one way or another! 
There has been lots of debate about whether this is a good idea or whether systems should be 
more forgiving! However, the important thing to remember is I am talking about the design of a 
single component - this in no way affects or is affected by the basic architecture of FBP. 
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So far, ISM1's abilities might seem about what you would need if you were "black boxing" a 
display function. However, it also provided another capability, which dramatically simplified the 
logic in the other components of the application: we have discussed this in Chapter 11 under the 
title of "representations". As I said in that chapter, representations mainly come into play when 
you need to present data to humans, or port it across systems. 

In a prototype of an interactive application using straight ISPF I found three PL/I fields had to be 
defined for every numeric field on the screen: 

• the field in a computational format 

• a zoned decimal field (e.g. 000001234) 

• a character field for input in case the user wanted to modify the field 

When we converted this prototype to use ISM1, the number of fields we had to declare in the 
HLL portion of  the application dropped by 2/3!  We also discovered a number of  additional 
bonuses: 

• you could send an IP with an attached descriptor to ISM1 and it would automatically be 
displayed in the desired format 

• the user could enter the data in free-form, but you could be sure that it wouldn't get into 
the system unless it was a valid representation 

• you could implement a standard input convention for your whole shop - e.g. require that 
the field be clear apart from the incoming data (some screen managers allow you to leave 
junk at the end of a field following the data just entered) 

• you could send an IP to ISM1 for interactive handling, or you could send it to a file writer 
and  you  didn't  need  to  make  any  changes  to  your  data  IPs.  The  effect  of  this  was 
enormously improved testing and regression testing, because you could test a lot of your 
logic in batch. 

On one project in IBM Canada, this last technique was used very effectively by my colleague, 
Philip Ewing. Later in this chapter I will share with you what he has written about that project. 

We have now sketched out a screen management component ISM1, which accepts one or two 
substreams as input, and outputs them again after the user has responded. If you are working in 
the IMS/DC environment,  it  wouldn't  be all  that  hard to split  these functions and link them 
together using persistent storage. 

Now let's look at the first figure in this chapter. We need to fill in the logic between SM and the 
application logic. To do this, the first step is to interpret the user's action. Restricting ourselves 
for simplicity to ISPF and 3270-type terminals, the user may decide to: 

• modify any data field, including Select fields as a special case 
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• enter a command in the command area 

• hit a function key 

• hit a Program Attention key (this will lose modified data) 

• hit Attention 

• position the screen cursor to a particular field 

These will of course often be combined, e.g. putting an M [for "maximum"] in the command line 
and hitting PF8 ["down"] causes a jump to the bottom of the data in ISPF. 

All  these  actions  have  to  be  encoded so  that  downstream processes  can decide  what  is  the 
appropriate response. If we add in more modern devices and interfaces, obviously there are still 
more variations, e.g. monitoring key-strokes and mouse movements in real time, but it seems that 
we will still have the cycle (or maybe many concurrent ones) of display - user action - interpret 
user response - program action - display. 

In the ISPF world, and also IMS/DC, function keys are usually treated as commands, so one of 
the  standard  outputs  of  our  Screen  Manager  will  be  a  "command".  These  may  be  the  very 
frequent  ones  like  UP,  DOWN,  END  and  HELP,  which  are  almost  universal,  or  more 
application-specific ones. It turns out that these commands are convenient bases for the decision 
about what to do next. Always remember that each of the components described here can be used 
independently of any other. Now, in Chapter 7 we described DFDM's dynamic subnets - subnets 
which were linked as separate load modules and were loaded in dynamically and given control 
by  a  special  component  called  the  Subnet  Manager.  This  will  provide  a  convenient  way of 
subdividing and managing our  application.  The Subnet  Manager  is  driven by IPs containing 
dynamic  subnet  names,  so  we  need  a  component  which  will  take  the  output  of  the  Screen 
Manager  and  generate  the  subnet  names  for  the  Subnet  Manager.  Let's  call  this  the  User 
Response Analyzer (URA). 

The URA component's job is to look up in a table patterns consisting of screen + action, screen 
only or action only, and decide what to do about them. As we said, since it sits upstream of the 
Subnet Manager, its main job is to select subnet names to be sent to the Subnet Manager, but you 
might decide to have it bypass the Subnet Manager, and send its input IPs directly to the Screen 
Manager. In this case, you could have it decide screen names. You could also have it do both. 

You will notice that we haven't said where this table should be held: it could be compiled into a 
load module, stored as a flat file, or held in a data base. Perhaps a file would be appropriate 
during development, and a load module in production. You will perhaps notice our predilection 
for tables - this is one of the most important ways of achieving portable code (remember Bucky 
Pope's class codes, alluded to in an earlier chapter). 

The URA table might therefore look something like this: 
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  Old Screen         User Action      Subnet           New Screen
  ================================================================
  A                   CHOICE1         SUBNET1          B
  B                   END                              A
  A                   HELP                             HELP_FOR_A
  HELP_FOR_A          END                              A  
  .
  .
  .
  .
Figure 21.2

Obviously this table is very easy to modify - in fact, if you add a comment capability (an asterisk 
in col. 1 means ignore this line), it really becomes self-explanatory. 

The last component I am going to describe is the List Manager, another general component. Its 
fundamental metaphor was sets of lists which persisted in storage, organized by "levels" - thus 
employees might be on one level, their children, departments worked in and courses taken might 
be three different lists at the next level. It could accept commands to do various things with these 
lists and levels, such as "create a new level", "insert a list at the current level", "jump to the next 
lower level", "pop up one level", "output a list (non-destructively)", "delete a level", and so on. 
Although (because?) this component was very powerful, it  took the most work to manage its 
input and output. It was very interesting for another reason also - the List Manager perhaps most 
closely resembled an OO "object", in that it had an internal state, being constantly modified by 
incoming commands  (messages)  with or without  accompanying  data.  Its  structure seemed to 
match our perception of what was going on in the prototypical interactive application - i.e. the 
user would display an employee, then ask to go down one level to find his or her children, pop 
back to the previous level,  and so on. Because it was a single looper process, we could just 
manage these lists by working with IP pointers - we didn't have to pay the overhead of chaining 
or unchaining IPs. Also, it provided a focal point, in case we needed to store really big lists, 
where lists could overflow to disk. We also expected that, when we implemented this design on 
IMS, it would be very easy to dump all our lists to disk at the end of a transaction, and retrieve 
them when they were needed again. 

In hindsight, the problems we ran into with the List Manager were probably to be expected, but 
they  came  as  somewhat  of  a  surprise  to  us!  I  believe  we  were  still  thinking  of  interactive 
applications as sequential, so the command-driven, single store made sense. However, it was so 
convenient  to  stash  things  away in  the  List  Manager's  storage  that  we  had  more  and  more 
processes sticking stuff in there and taking it out. The more complex our networks became, the 
harder  it  became  to  control  the  exact  sequence  in  which  the  commands  arrived  at  the  List 
Manager. What we had done, of course, was to implement a somewhat more complex array of 
pigeon-holes,  and the non-destructive read-out which seemed so attractive at  first  caused the 
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same problems FBP was trying to avoid! Strange sequencing problems started to show up - lists 
would get attached to the wrong level, lists would show up on two different levels, and so on. In 
turn, the sequence of the command IPs had to be controlled more tightly, introducing still more 
complexity. In hindsight, I believe we would have been better off using tree structures flowing 
between processes, rather than complex data structures within a process. Alternatively, a List 
Manager should only be fed by a single process, and this is the way I have shown it in the next 
diagram. Lastly, I believe that the underlying metaphor may not have been quite correct. For 
instance, suppose the user is stepping through an employee's employment history and decides to 
start looking at her courses. Should this be made another level? Or are all these lists at the same 
level? A better metaphor might have been to be able to pop up new windows as new lists are 
requested. It's also useful to be able to open multiple windows on the same list (but you have to 
be careful about updates!). 

We can  now show the  final  picture.  Remember  that  this  is  only  a  skeleton  -  you  can  add 
additional processes to the diagram, and extend it in other ways also. And remember also that the 
List Manager, although shown in the diagram, is not the only way to manage storage of data. 

where SM  is a Screen Manager
      ST  starts the network as a whole
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      URA is the User Response Analyzer
      SUBN is the Subnet Manager
      LM  is the List Manager  
Figure 21.3

What we have described here is the structure we called the DOEM, pronounced "dome", (DFDM 
On-line Environment Manager), still fondly remembered by some of the people who worked on 
it! It was at the same time a skeleton structure, a set of components and an approach to designing 
interactive applications. This is reuse at a higher level than the level we have been mostly talking 
about up until now, and from that point of view a precursor of the way interactive systems will be 
built  in  the  future.  While  the  DOEM  was  a  very  powerful  set  of  concepts,  some  of  its 
components were more satisfactory than others in terms of their encapsulation of useful function 
and the simplicity of the underlying mental image. In some ways, the DOEM fell into the pitfall I 
have warned about elsewhere in the book - we tried to make it very general, based on our ideas of 
what a DOEM should provide, without frequent consultations with real users. Or we may have 
been talking to the "wrong" users. We never did build it for the IMS/DC platform, although we 
basically knew how to go about it. As it turned out, we didn't need that implementation anyway, 
for the reasons I am about to relate. This story is salutary, so I am going to tell it in some detail, 
as a cautionary tale for those embarking on developing reusable code. 

Most of the time we were working on the DOEM, we were supporting two projects - let's call 
them A and B. The intent was to provide team A with an IMS/DC version of the DOEM, and 
team B with a CMS version. This seemed reasonable because a number of the components could 
be shared, and, although the CMS version was certainly simpler (single Screen Manager module, 
etc.), we understood pretty much how to build the DOEM on IMS/DC. However, the two teams' 
approaches to working with us were very different. The A team tended to be demanding and 
critical, frequently asking for specialized modifications of components or new facilities just for 
their own application, while B was more willing to work with us and to stay within the facilities 
that  were  already available  or  in  plan.  Both  projects  had the  potential  to  be very  important 
products, for different reasons, and both groups felt that they were getting benefit from DFDM, 
but both of them required quite a bit of our time, both to provide general support and to code and 
test the reusable components being supplied for the two environments. 

Our development team was a small one and, under the circumstances, was getting stretched very 
thin trying to support both projects! Finally, management decided that we could only support one 
of these projects, and, after much soul-searching, they picked B. We started working intensively 
with B to make sure that the CMS DOEM worked well with their product, and as the two started 
to come together,  we all  realized that  this had been a good decision.  This product is now a 
successful product in its own right in the Latin American market. 

The A team were told that they could continue to use DFDM, but not the DOEM, and that we 
could no longer afford to give them special support. We really expected them to decide to drop 
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the use of DFDM altogether, and while this would have been disappointing, we felt that this 
would  be  a  pragmatic  decision  on  their  part.  However,  at  this  point,  a  very  strange  thing 
happened: faced with the possibility of losing the use of this productivity tool and having to 
redesign and rewrite a lot of their code, the A team turned right around and started to solve their 
own problems using basic DFDM! Instead of having us build complex generalized components, 
they found simpler ways of doing what they needed, and the result was a less complex, more 
maintainable  system.  Their  product  is  also  now  a  success,  and  is  saving  the  company 
considerable amounts of money. 

Actually, an additional project using the DOEM appeared suddenly on the scene one day, rather 
to our surprise! It seemed that a bright young contractor had been given the job of building a 
small interactive system, and had built it in a matter of a few weeks, using the DOEM, without 
telling any of the DOEM development team! We were very conscious that our documentation 
was nowhere near adequate at that time, but he said he had no trouble understanding and using it! 
Of course, he is very bright, but how often does something like that happen using conventional 
programming tools? 

Since fairy tales usually have morals, let me propose the following: "Sometimes it is better to 
redesign a squeaky wheel than just put more oil on it". 

The Screen Manager, ISM1 (actually an earlier version of it) was also used by itself, before we 
even thought of the DOEM, on an earlier project within IBM Canada, and this project became 
very successful, not least because Philip Ewing was excited by the concept of FBP (he still is!), 
and was discovering neat new uses for it all the time. As you may have gathered, ISM1 was a 
very  powerful  component,  and  all  by  itself  considerably  simplified  the  development  of 
interactive applications. Its development predated the rest of the DOEM by several years, so we 
had used it for several small projects. Here is what Philip has written about our experience on this 
project (called BLSB). 

DFDM  was  selected  for  use  on  the  BLSB  project  because  of  the  significant 
productivity  improvements  that  were  anticipated.  The development  team was  not 
disappointed. Significant savings were realized in the following ways: 

1. We  were  able  to  prototype  more  easily,  beginning  with  a  simple  screen 
display, and adding functions one by one until the user was satisfied. The full 
function prototype could be modified to add a new edit or data-base lookup in 
a matter of hours, without disrupting the existing code. 

2. Testing was made simpler because we were able to unplug the online screens 
and feed in test SCREEN REQUEST ENTITIES [abbreviated to SREs - these 
correspond to the "request IPs" referred to above] from files, and save the 
returned SREs into separate files based on type of error. In this way all of the 
application function in the online system could be tested in batch. 
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3. Building on the experience gained in the function testing, the legacy data was 
converted to the new database format by feeding in the old data in SRE format 
(simulating  re-keying  all  of  the previous 3 years  of  data  through the  new 
system). The errors were saved in separate files based on the ERROR CODE 
that the application put into the SRE before returning it to the screen. Each 
file was known to contain only one type of error. In three iterations through 
this process we were able to convert and load 64,000 history records with only 
12 records needing to be re-keyed manually. In addition to not having to write 
a separate conversion program, we were also assured that all of the data that 
was now in the database had passed all of the rigorous editing that had been 
built into the new application logic. 

4. A  great  deal  of  effort  in  the  design  stage  was  saved  because  we  could 
decompose functions to very granular levels before implementing. This meant 
that less thought needed to be put into the way different functions might affect 
each other, because different functions were now completely decoupled. 

5. The "off the shelf" screen display function alone saved about 700 lines of 
application coding to handle ISPF panel displays. We did know ISPF before 
starting  this  project,  but  would  not  have  needed  to,  since  all  of  the  ISPF 
specific code was in a DFDM-supplied function. 

"Less than 24% of the functions needed to be coded by the project, the rest came off 
the shelf. Furthermore, of the ones that we did have to code, the most complex was 
about 100 lines of code." 

A comment made to me recently about the BLSB project: "We allowed 3 weeks for testing, but it 
worked the first time."! 

Another project which was very interesting was a system we built to do project resourcing, called 
PRORES, designed by A. Confalonieri, and built by myself, using a Screen Manager similar to 
ISM1 and a User Response Analyzer, running on CMS. This Screen Manager was also driven by 
IPs with descriptors, but generated and accepted 3270 data streams (extended data stream), rather 
than using ISPF. It used a WYSIWYG representation of the screen, and was the heart of the 
prototyping tool which I have mentioned several times elsewhere in this book. 

The logic for PRORES was all written in REXX, and, considering that PRORES had to do a very 
large number of date calculations for each screen, its performance was surprisingly good. The 
basic idea was that, for each project that you were working on, you just entered a number of 
person-months  and PRORES would  generate  all  the  dates  and staffing  requirements  for  the 
standard 5 phases of a project (Requirements, External Design, Internal Design, Development, 
Implementation), using formulae based on the standard "Volkswagen" shape or "snail curve" that 
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most projects follow. You could also specify that a project should be "flat", instead of standard. If 
you constrained the end date to be earlier or later, you would get a more humped or flattened 
staffing curve. If you didn't specify the start date, it would use the date of the day you ran it on. 
You could also request a graphical display of a department or division's projects, and it would 
use PGF, GDDM's Presentation Graphics Facility) to show all the projects in Stacked Bar format 
on a  single chart  across  time.  The Stacked Bar  format  meant  that  the project  loadings were 
displayed cumulatively, so the top edge of the diagram showed the total staffing curve for the 
whole department or division. Management could then flatten and lower the overall curve by 
shifting projects around, stretching them out or compressing them, or moving projects between 
departments. Suppose you had two projects PROJ1 and PROJ2, both with the characteristic snail 
curve: 

Figure 21.4

Now getting PGF to superimpose them gives the following kind of picture: 

Figure 21.5

The  outer  "envelope"  then  shows  the  total  cumulative  loading  for  the  two  projects.  With  a 
relatively large number of projects, you can adjust things so that the top line is flat most of the 
time. "Flat projects" (projects which had a constant loading over their whole lifetime) could be 
used to handle things like  vacations,  education,  overhead,  etc.  All  dates  were constrained to 
business days, and once they were all calculated, individual project dates could be modified as 
desired. 
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Technically, this project was interesting because of the languages and software involved. It was 
also a decision assist type application. You would get a screen just full of generated dates, and 
then, depending on which dates were changed, it would do intelligent things with them. This 
meant that it  was very important for the Screen Manager to report on which fields had been 
modified. All the calculations were done in REXX. Date displays were handled by means of date 
input and output routines written in Assembler, driven by the Screen Manager using descriptors, 
so REXX only saw dates in canonical form (number of days from a reference date). If you pick 
your reference date correctly, then day of the week is just "date modulo 7", and you can make 
Sunday 0, Monday 1, and so forth up to 6 (Saturday). This system was used intensively over a 
short period to help reorganize a portion of our division. 

I am going to mention briefly another use I made of the Screen Manager because, although it was 
not a complete project, I found it very suggestive of the shape of user workbenches to come. 
Most of the application development on IBM hosts is done today (1993) using ISPF/PDF on TSO 
or  CMS  EXECs.  Within  this  kind  of  workbench,  developers  use  quite  a  wide  range  of 
"languages": HLLs, Assembler, JCL, DBDs, PSBs, MFS, FBP networks (hopefully!), 4GLs, and 
of course documentation in his or her own national language. All of these are held in different 
data sets, and have different, although standard, processing applied to them. PDF follows the 
"action/object" paradigm: decide the action, then select the object. Having to choose the action 
first  means that  you always have to know what language the thing you are working on was 
written in. Also, in PDF you pick the same EDIT for everything, but then usually have to go to a 
completely different menu to process the text you have entered, and you always have to reenter 
the object's name, even if you were working on it a few seconds ago! Native CMS is a little 
different since it is command-oriented, but here you have to remember the command name to do 
the desired processing. Of course both lists support lists with optional "wildcards", but it is still 
hard to move a single object through a series of phases (like edit, compile, run test, etc.). 

I figured that it would be nice if everything a developer was working on could be treated as an 
object of a particular type, with a unique name. The developer could just select the object she 
wanted to work on, and the system would know what language it was written in, and display an 
action bar showing what actions could be applied to it. So the interface would prompt you for a 
component name (with optional "wildcards"), or you could ask for all components of a given 
type,  and you could just  click on an entry in the action bar,  without  having to worry about 
choosing an inappropriate action for the object's type. Make the whole thing table-driven, and 
you have a very powerful, friendly system for application development - I know, because I built 
one for the CMS environment! All I had to do was select the object, and an appropriate action bar 
would come up, which would let me select from a list of CMS EXECs (e.g. EDIT, COMPILE 
and the most important one of all: DESCRIBE). If the object types are user-modifiable, you can 
be more specific, i.e. "Assembler source" could be split into "programs" and "macros", or you 
could have types like "screen", which will generate MFS or BMS, plus declares for the message 
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layouts. You could drive syntax-sensitive editors for different languages, or for objects of type 
"diagram", you could make the EDIT option call  a picture editor. I  also felt that each action 
should go as far as possible, i.e. if you decide to COMPILE an Assembler source program, what 
you really want to do is translate it from human format to machine format - there is no particular 
point in making ASSEMBLE one action and then LINKEDIT another. The COMPILE action 
could  also  automatically  update  control  tables  for  use  by  tools  like  MAKE  or  symbolic 
debuggers. 

The reason I said this prototype was suggestive is that, if you can build this kind of development 
environment using FBP, and we know that FBP also lends itself to building compilers and text 
processing  software,  this  conjures  up  the  very  appealing  image  of  a  totally  user-modifiable 
development environment, built out of communicating standard components. This wouldn't be 
just a set of tools - this would let developers continuously expand and improve the workbench 
itself! 

Last, but not least, in this rather varied set of examples, there was a project, which might be 
called an Electronic Information Booth, to provide a visitor to our building with information such 
as how to find people, information about the building (layout, statistics, etc.), promotions during 
the month, a "trading post", and the cafeteria menu for the week. Everything was to be highly 
graphical and menu-driven. I prototyped this using the same screen manager I described above 
and a User Response Analyzer  to implement  the paths between the screens. As I  mentioned 
above,  this  screen  manager  had  a  fairly  complete  graphical  specification  facility  based  on 
polygons, so it was well suited to developing a lot of pictures in a hurry! Since I already had the 
Screen Manager and User Response Analyzer, it was really just a matter of working with our 
very talented resident artist, Bob White, to develop the pictures. As it was around Thanksgiving, 
we decorated the Thanksgiving menu with a rather nice stylized corn-cob. During the Christmas 
season, we put the Christmas menu on its own screen with a little Christmas tree at the top! Later 
on, it was decided to implement this application using PCs, but our prototype certainly played a 
significant role in convincing management of the validity of the idea. 
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I cannot stress too strongly that FBP is intended for building real systems, and indeed the various 
dialects I have been describing in this book have been successfully used for this purpose many 
times! To achieve this, we have to keep performance in mind - not only must a system do what it 
is supposed to do, but it must do it in a "reasonable" amount of time. While admitting that this is 
a subjective measure, I submit that, at a given point in time, we generally have an image in our 
heads of what constitutes a reasonable amount of time for a particular function. While there will 
almost certainly be disagreements, say between users and developers, we see the use of SLAs 
(Service  Level  Agreements)  becoming  more  and  more  widespread,  which  force  the  parties 
involved to reach some sort of compromise between what one wants and the other will commit 
to. Response time is another area which is highly subjective, but studies have shown that there 
are  observable  differences  in  behaviour  as  response  time  changes,  which  match  the  users' 
subjective impressions.  Once people get used to subsecond response time,  anything worse is 
highly frustrating. If it gets really bad, their whole style of interacting with the machine has to 
change. 

Now a system which has to deliver function to real life users has to be reliable, and also has to 
perform.  A  system  may  provide  wonderful  function,  but  if  you  cannot  produce  adequately 
performing systems, it will only be of academic interest. Suppose you decide that you are going 
to interpret English descriptions of function using a natural language parser - it may be a great 
research project, but, given present-day (1993) technology, you probably can't run a bank on it! 
Can you "run a bank" on an FBP implementation? Yes, we've been using it for a large chunk of 
the batch processing of a bank's bread and butter transactions for the past 20 years! 

Now, not only must the infrastructure be fairly fast, but it must be tunable. Key to this, I believe, 
is being able to form a mental model of what is going on, and where a performance or logic 
problem may be occurring. If a developer or debugger cannot do this, the reaction may be to 
want to throw the baby out with the bathwater. Adequate performance is important even when a 
new system is in the evaluation stage. At this point, overall impressions can be very important. 
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The system has to have knobs and levers that let the developers tune the system, and the system 
has to behave in a linear manner. Linearity means that systems must "scale up". As you add 
function, not only should you not get sudden breaks in continuity - crashes, unexpected results - 
but ideally the curve should not even be exponential. In conventional programming environments 
typically complexity, and therefore development time, goes up exponentially as program size. 
Humans tend to have difficulty grasping the implications of exponential curves. 

While  it  is  possible  that  software  could  automatically  balance  two  variables,  I  believe 
performance is a multiple variable problem. In any given application, a programmer has to juggle 
resources, algorithms and whole design approaches. Given this complexity, the software should 
be made as transparent  as possible.  In FBP, although there are many possible solutions to a 
problem, the developer can select a solution and then see the results,  and can in fact  iterate 
quickly through a large number of possible solutions. 

In  my  experience,  the  single  most  important  factor  affecting  performance  is  the  design.  In 
general, shaving a few microseconds off a subroutine will not make much difference, unless it is 
being performed billions of times. But a different approach to a design can often save seconds, 
minutes or even hours. Here is a simple example: about 20 years ago, a programmer on a project 
I was on needed to calculate the day of the week, given a date. He decided he would need a data 
base, running 3 years into the future and 3 years into the past. Of course the data base would have 
to be maintained by hand, so he planned for it to be updated once a year. Even without taking 
into account the manual labour and the difficulty if he was presented with a date outside the data 
base's range, I just figured that it might be a lot simpler to calculate it mathematically! Eventually 
this huge effort turned into a macro of about 12 statements - guaranteed until the year 2099! I am 
sure you are saying that's a trivial example and that we were all ignorant, but I am sure there are 
examples  in  your  code  where  a  small  change  of  viewpoint  can  yield  a  big  dividend  in 
performance or maintainability, or both! 

However, to be able to take advantage of these changes of viewpoint, you have to have a modular 
system. With FBP, as we saw elsewhere in this book, you can replace a sort by a table look-up, 
or a file by a connection; you can move function from one job step to another, or from one 
system to another, and so on. As the programmer I quoted earlier told me, "One of the things I 
like  about  AMPS is  that  there  are  so  many more  ways to  do  a  job  than with  conventional 
programming".  There is never just one way to do a job. And an FBP developer is continually 
making conscious trade-offs between different factors. For instance, she might decide to favour 
response  time over  throughput,  so that  might  tilt  the scales  towards  direct  access  instead of 
sorting. Or the old storage vs. CPU time debate. Or within a component, you can trade off state 
data against code: Boolean switches can either be held in a variable, or can be implemented by 
choosing between two code paths. It is important to know what options are available to you, and 
the system must allow you to choose the one you want. 

The fundamental trade-off we make in FBP is that we have decided to spend a certain amount of 
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CPU time to get improved programmer productivity and program maintainability. Of course the 
industry has been doing this since HLLs and operating systems were invented, so this is nothing 
new, but you always have to decide how much you are willing to pay. But the amount also has to 
be  controllable  -  a  certain  cost  may  be  appropriate  for  one  type  of  application,  but  wildly 
inappropriate for another. 

In the case of FBP, the cost is closely related to the number of processes, which in turn is related 
to what is called "granularity". In general, the finer the granularity, the more CPU time gets used, 
so  you  can afford  smaller  "grains"  in  an  infrequently  used  part  of  our  application  network. 
Conversely, 5,000,000 IPs going through a path of 12 processes will cost at least 120,000,000t 
units of CPU time, where 't' is the cost in CPU time of one API call (each process is going to cost 
at least 2t units per IP - for a receive and send). Depending on the speed of your machine and 
what 't' is, you may decide that 12 is too many. Reducing this number will probably entail some 
sacrifice in terms of reuse or modularity, as you will be combining smaller, reusable functions 
into larger, more ad hoc components. 

Periodically, people will write an FBP network and a PL/I program which do the same thing and 
then compare their performance. This is really comparing chalk and cheese! The maintainability 
of the two programs is totally different, as a PL/I program adds far more maintenance load to 
your  DP  department  than  does  an  FBP  network.  Furthermore,  if  a  bug  in  a  generalized 
component is fixed, everyone benefits, while if a PL/I program bug is fixed, usually there is no 
lap-over to other applications. 

Susan  came  to  us  with  a  program which  she  felt  was  slow  compared  with  a  "reasonable" 
execution time. I noticed that she was using the Assign component to set a 1-byte field in every 
IP, and there were a lot of IPs. She had been told to make her program very modular, but also she 
probably felt that Assign was a neat function, and it meant that much less PL/I that had to be 
written and maintained. I suggested that she add a single statement to each of a couple of her 
hand-coded PL/I components. There were other things we could do which together improved the 
running  time  significantly.  Although  we  "improved"  her  program  to  the  point  where  its 
performance was acceptable, we probably reduced its maintainability slightly. But this is another 
trade-off for which no general rules can be given - each situation has to be decided on its own 
merits.  I  mention this example mainly to stress that it's  a complex decision whether to use a 
separate  generalized  component  or  add  function  to  custom components,  involving  issues  of 
maintainability,  performance, predicted use, ROI and so on. There is a strong element of the 
aesthetic here - nobody  should make the decision for you, just as nobody can tell you which 
paintings to like. Maybe someone will, but that's life! 

The bottom line is that we have to give application designers as many choices as possible, and as 
much control  as possible,  and systems which won't  or  can't  do this  won't  survive.  Why has 
COBOL  survived  when  so  many  more  sophisticated  products  have  fallen  by  the  wayside? 
Because, even if you don't like it aesthetically, COBOL does provide this control, even if it takes 
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years  to  write  a  system  and,  once  written,  it's  even  harder  to  maintain.  However,  COBOL 
systems degenerate over time, as the developers  lose knowledge of, and control over,  what's 
going on under the covers; FBP systems don't. 

Now let's talk about specific techniques for tuning the performance of FBP applications. 

IN Chapter 20, we talked about the basic MVS synchronization technique of WAIT on ECB. We 
found that quite often when the same program was written in, say, PL/I and in DFDM, that the 
elapsed time of the DFDM run would be less than that of the PL/I run, but the CPU time would 
be somewhat greater. It becomes obvious why this should be so if you visualize an FBP network 
with 6 processes all doing I/O: provided the I/O is using different channels, drives, etc., it can all 
be happening concurrently, while the scheduler will always be "trying" to find CPU work to do to 
fill available CPU time. FBP programs tend to be CPU gluttons, but that is also the designer's 
choice - if he or she is concerned about this, I/O processes can be prevented from overlapping by 
synchronization signals. Usually, however, programmers want to reduce elapsed time, e.g. to fit 
into a processing "window" (time-slot). Today windows are getting shorter and shorter, so there 
is pressure to reduce elapsed time, even at the cost of more CPU time. 

As we described above, using FBP connections in place of intermediate files definitely saves 
elapsed time, as all the records no longer have to be written out to disk and read back in again, 
but  it  will  save CPU time as  well,  due to the reduction in the number of  EXCPs (EXecute 
Channel  Program).  In  MVS,  although the  EXCP count  is  maintained as  a  separate  piece  of 
statistical information, people tend to forget that EXCPs are quite expensive in terms of CPU as 
well. 

Here  are  some  statistics  recorded  during  an  evaluation  of  DFDM  against  an  existing  PL/I 
application, done by an IBM I/S site in the US:
  I/O EXCP requests:            53.6% reduction         
  CPU Usage:                    16.7% increase  
  Elapsed execution time:       37.7% reduction         
  External DASD requirements:   84% reduction 

Here is what they said about those figures: 

"We attribute the above reductions in resource usage to the improved design of the 
application (as a result of using structured analysis which is promoted in conjunction 
with DFDM). The slight increase in CPU usage is a small trade-off when you take 
into consideration the improved design of the application which should significantly 
lower future maintenance." 

Let's say that you have tuned your I/O as well as possible, and that you are now trying to estimate 
how much CPU time your application will take. I have found that the main predictor for CPU 
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time is the number of API calls. On the IBM Model 168 (this was about a 2 MIPS machine), each 
API call took approximately 10 microseconds. Of course later machines are much faster, but later 
implementations of FBP are typically written in higher level languages, have more features and 
do more checking, so the time has probably stayed approximately constant. Just for comparison, I 
recently did some measurements on THREADS, running on a 33 MHz 80486DX, and the time 
per API call was approximately 50 microseconds (THREADS is written in C, so this figure could 
probably be improved by rewriting critical sections of the scheduler in Assembler). 

Now, in most networks, there is usually a "back-bone": a path where most of the IPs travel. You 
could think of this back-bone as much like a critical path in a Critical Path Network. Let us 
suppose that  this path consists  of 12 processes,  each sending and receiving: then,  taking the 
figure of 10 microseconds, we get a cost of 240 microseconds per IP. If 5 million IPs travel this 
path, you get a total CPU time for API calls alone of 1,200 seconds, or 20 minutes. You may 
therefore decide that you want to consolidate some of the number of processes in the application 
"back-bone" into larger, less generalized ones - as we said above, this will reduce maintainability, 
but you may well decide that it is worth the price. Of course, you don't have to consolidate all the 
processes in your network - areas of the network which are visited less frequently,  like error 
handling logic, may be left more granular. 

It  is  common wisdom nowadays to concentrate on developing function first,  and then worry 
about performance afterwards. This is quite valid as long as you don't squander performance up 
front  by  poor  design.  And  here  of  course  is  where  aesthetics  comes  in  -  I  started  my 
programming  career  on  an  IBM 650,  which  had  2000  10-digit  words  stored  on  a  spinning 
magnetic drum, and I believe that it became almost an instinct to make programs as lean in terms 
of time and storage as possible. But, even in those far-off days, there was wide variation in the 
performance of code by different programmers. I believe the most successful ones never lose 
sight of the performance requirement, so that it is a constant undertone to their program designs. 
If you ignore performance and expect to add it back in later, you will generally be disappointed 
in the results! 

Having said that, I must also warn against the other extreme - Wayne Stevens repeatedly stressed 
that you will generally not be able to predict where is the best place in your application for you to 
focus your tuning efforts. You may spend lots of time trimming a few seconds off some code 
which turns out only to be used occasionally. It is much better to run a performance tool on your 
application, using representative data, and find out where you should really be putting tuning 
effort. You can actually use the time you have saved by using an improved methodology to tune 
the parts of your system which make a real difference. One of the satisfying things about FBP is 
that, once you have improved the performance of a component, all future users of that component 
will benefit. 

Similarly, you may decide to create a variant of a component to exploit a trade-off, and again you 
have increased the range of choices for future users. An example of this is a coroutine I built 20 
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years ago to read disk files faster than the standard reader, but at the cost of more storage. We 
had a large BDAM data set which had to be read as fast as possible. The regular sequential reader 
worked fine, as this data set could just be treated as a sequential data set (in MVS BDAM and 
BSAM files are held on disk in essentially the same format), but I also knew that all the records 
of a BDAM data set were the same length, which is not necessarily true for sequential files. Now 
the tracks of an IBM disk drive start at a point called the index point, so, to read a track, the 
access method has to wait until the index point comes around before starting to read the data (this 
is called "latency"). If you miss it, you have to wait a full revolution for it to come round again 
(and we could see this happening in our performance studies). I also knew that each record is 
physically labelled with a record number on the track, so I figured that it should be possible to 
start reading anywhere on the track, and just determine the record sequence afterward. Since this 
technique would be imbedded in an FBP component, it could still generate the records in the 
correct sequence. You do have to calculate  the number of records per track first,  but all  the 
records are the same length, so there are standard formulae and tools for doing this. On the minus 
side is the fact that this approach takes up a track's worth of storage, and your code is somewhat 
tied  to  the  device's  characteristics;  on  the  plus  side,  it's  fast!  In  our  case,  this  Read  Track 
component was definitely worth it - it didn't get used widely, but, when we needed it, there was 
nothing like it! Remember also that in FBP there is never just one way to do a job, so nobody is 
forced to use your component. This component can just be added to the tools available for your 
programmers to use - they just have to understand its behaviour, not how it works inside. By the 
way, training programmers to think like users is not that easy! [This example has apparently been 
obsoleted by new hardware design of DASD, but I still think it's a valid example of a certain type 
of thinking, so I have left it in the text.] 

Another kind of trade-off can be made in FBP by varying the capacity of connections. FBP's 
connections provide a powerful way of trading off CPU time against storage. All FBP schedulers 
so far have followed the strategy of having a process continue running as long as possible, until it 
is suspended for some reason. Now the more IPs there are in a process's input connection(s), the 
longer that process can go on before a context switch has to take place (assuming there is room in 
its output connections to receive the output). So, in general, larger capacity connections reduce 
context switches, and therefore CPU time. But, of course, larger capacities mean more IPs can be 
in flight at any point in time, so your application will take up more storage. Another way of 
looking at this is that you are effectively loosening the coupling between processes, so larger 
capacity connections equals looser coupling, whereas smaller capacity connections equals tighter 
coupling.  For  instance,  we  discovered  that  sequential  readers  perform  best  if  their  output 
connections can hold at least a block's worth of records. 

The Read Track coroutine described above was used in conjunction with some other techniques 
to reduce a disk file scanning job from 2 hours to 18 minutes. The original running time of 2 
hours was a cause for concern as we knew that the data we would eventually have to process was 
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several times the amount we were using in the 2-hour run. It therefore became imperative to see 
what we could do to reduce the running time of the job. We achieved this significant reduction by 
changing the shape of the network and adding one new component. This example used AMPS 
and is described in my Systems Journal article (Morrison 1978), but for those of you who may 
not  have  access  to  it  I  think  it's  worth  repeating  here,  as  it  embodies  some  very important 
principles. 

The application scanned chains of records running across many disk packs. One set of packs 
contained the "roots" of the chains, while another set of disk packs contained what we might call 
"chain records". Each root contained pointers to zero or more chain records, which in turn might 
contain pointers to other chain records, which could be spread over multiple packs. The problem 
was that our insert and delete code was occasionally breaking chains, so I was given the job of 
running through every chain looking for broken links - but obviously the scanning program could 
not use the same code that was causing the problem! So I had to write all new programs to do the 
scanning job. These programs understood our pointer structure, and there was enough internal 
evidence that I could always detect a broken chain. 

My first approach looked like this:

Figure 22.1 

where RS means Read Sequential. This was the standard reader - we just concatenated its input 
files together, so its disk packs were read one after another. CF was the Chain Follower which 
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follows chains from one record to the next and outputs diagnostic information only when it finds 
a broken chain. SRT sorts the output of CF to put it into a sequence which is useful for humans, 
and PRT prints the results of the Sort process. 

The reason  for  the  Sort  is  that  the  root  records  were  scattered  randomly  on  the  root  disks, 
whereas it was more useful to see the errors ordered by, say, account number within error type. 
Since the number of errors should gradually diminish to zero as program bugs in the access 
methods were fixed, the overhead of the Sort process would diminish over time also. 

This program as shown above took 2 hours to run, even though we were using a test data base, so 
we absolutely had to speed it up! 

My first realization was that the CF component was heavily I/O-bound, as it was spending most 
of its running time doing direct accesses to disk records, which usually included a seek, disk 
latency and then a read of a record into storage. I figured that, if we could run a large number of 
these processes concurrently,  the I/O times of the different  processes would tend to overlap. 
However, if we had too many parallel processes, they would start contending for resources, i.e. 
channels and arms. I therefore decided rather arbitrarily to have 18 of them running concurrently. 

I also thought that, since the roots were scattered across multiple packs, we might as well assign 
each pack its own reader and let them run in parallel also. And, if I was going to do that, why not 
use the full track reader I described earlier in this chapter? Its output is data records, in the right 
order  (although  this  wasn't  even  strictly  necessary  for  this  application),  so  the  next  process 
downstream wouldn't see any difference. 

Lastly, I needed something to tie together these two kinds of process: I needed a process which 
would assign incoming root IPs to one of the CF processes, in a balanced manner. I could have 
just done this using a round-robin technique, but I wanted to try something a little "smarter": 
could I select the CF process which had the least work to do, and thus keep the load across all the 
CF processes in balance? I reasoned that the most lightly loaded process should have the smallest 
build-up in its input connection, so if I always sent a root IP to the CF process with the fewest IPs 
in its input connection, this would have the desired effect.  I therefore wrote a load-balancing 
component which checked its output connections looking for the one with the smallest number of 
IPs. I feel this approach is quite general and could be used in many multi-server situations. 

Here is a picture of the final structure: 
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where RT is the full track reader. LB is the Load Balancing coroutine, and the 
other processes are as before.

Figure 22.2 

• Final result: elapsed time down from 2 hours to 18 minutes. 

• Programming cost: one new generalized component (LB) and a change to the network. 
We might want to count RT, depending on whether  we feel this was written for this 
purpose, or independently of it (it sort of happened along at the right time!). Furthermore, 
all these generalized components can be used in future applications. 

The FBP diagramming tool, DrawFBP, supports the multiplexing function shown above using a 
simpler notation, which also lets the designer fill in the multiplexing factor - this is the result:
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Figure 22.3

You may have been wondering how a component can check how many IPs are in a downstream 
connection when we have never mentioned a service to do this. This is an area of technology 
which I'm afraid is not "pure", but which I suspect comes up often when a concept has to come 
down  out  of  its  ivory  tower  into  the  world  of  real  applications...  We  never  did  build  an 
encapsulated service to count the IPs in a downstream connection and, if we had, it probably 
would have had to be a lot more complex. Instead we allowed one special component to peer into 
the  insides  of  the  infrastructure,  so  it  effectively  became  an  extension  of  the  scheduler.  I 
understood that it would have to change any time the internal structure of the scheduler changed, 
but that seemed better than providing a new service for the benefit of just one user. In hindsight it 
might have been even better to package the whole component as part of the scheduler, since then 
it would automatically participate in any changes made to the scheduler. 

In DFDM, we had a very similar situation with the Subnet Manager, which also did strange 
things to the innards of the scheduler (you will remember that it can "revive" dead processes). 
DFDM's  Time  coroutine  is  a  little  bit  like  that  too  -  this  coroutine  uses  an  existing,  but 
unpublished, service to generate "clock tick" IPs, and is the only coroutine which is allowed to 
use this service. 

Since I promised to talk about things which were not unalloyed success stories, I should mention 
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DFDM's NIP (Next Input Port) service. This is a service which we were enthusiastic about at 
first,  but  we later  felt  less  excited about.  Also,  new people  will  always  be joining projects, 
bringing different experience and tastes. In fact we did not include it in the Japanese version of 
DFDM. It is also appropriate to mention it in a chapter on performance, as it was intended as a 
performance tool. The idea was to be able to monitor which input port data had arrived at, and 
signal this fact to the component, which could then do a receive from that port. If no data was 
waiting at any input port, the component code could specify that NIP was to suspend until some 
data arrived, or that you didn't  want to suspend. The latter option provided a way of polling 
(which I think should be avoided anyway); the former option is much the same as tagging all 
incoming IPs to indicate their source, and then merging them into a single input port on a first 
come, first served basis. So all NIP really saved us was the need to allocate a field in each IP to 
indicate the source number and the need to set it. Perhaps its main appeal was that it matched 
very closely one's mental model of how a server servicing requests from multiple sources should 
work - but, as we have said above, this can be handled very nicely, just using FBP's many-to-one 
connection facility, so you really don't need to provide a separate service to do this. 

I mention these situations to describe a type of problem which will certainly come up from time 
to time. Under the pressures of deadlines, performance requirements or just because you get a 
neat idea, you will either be tempted to introduce small breaches in the bastions surrounding your 
system, or you will be persuaded to put in complex facilities for one or two users. Conversely, 
you may put your foot down and refuse to give in, and lose some customers. Should you give in 
to these temptations, or should you stick to your guns because you know the possible pitfalls if 
you don't? I can't answer that for you - all I can recommend is that you try to make sure you have 
thought through all the pros and cons before you make your decision! One hint: good code (no, 
make that any code) lasts a lot longer than you would ever expect and, when some dialect of FBP 
(hopefully) becomes more widely used, it will last longer still. Will you still be proud of your 
code 20 years from now? I sincerely hope so, because there's a good chance you'll meet it again! 
And, no, customers are not always right, but they are not always wrong either! 
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[Since the book "Flow-Based Programming" was written, a Java version of FBP has been built,  
now called JavaFBP. The code specifying a JavaFBP network is described in JavaFBP Network 
Definitions. This is an example of what might be called a "procedural" specification, and is  
similar to that used by a number of the systems mentioned in Cognates, such as NIL, developed  
by Rob Strom and his team at IBM. Although a network diagram can be converted fairly easily  
into such a specification, they are not easy to grasp directly - but then that is probably true even  
for the notations shown below when they become fairly large! The real answer, as always, is a 
multi-level diagram, supporting step-wise decomposition - see DrawFBP.] 

FBP applications start  off  life  as pictures or hierarchies  of pictures,  which have to be made 
"machinable" for execution. During most of our twenty years [as of 1994] of experience with 
FBP, we have never had advanced picture-drawing tools, so we tended to draw networks using 
pencil and paper, and then convert them by hand into executable networks. Although we have 
experimented with different notations over the years, the information which needs to be captured 
has remained fairly constant.  It  is  certainly true that FBP lends itself  to visual  programming 
techniques, so what I am going to describe will become less important as time goes on, but, for 
now, we still have to have notations which allow networks to be input directly into the machine. 

The diagrams typically used for Structured Analysis represent processes and their connections. 
To turn such a diagram into an FBP diagram, which can actually be executed, you only have to 
add the following data: 

• port names (or numbers) 

• parametrization 

• automatic ports 

For ease of understanding, you could always add the following to Structured Analysis diagrams: 
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• stream descriptions 

• process descriptions (e.g. "merge masters and details") 

• icons for external objects, users, etc. 

The same is true for FBP diagrams. Since we have mostly used pencil and paper, we never really 
worried  too  much  about  the  exact  diagramming  conventions  to  be  used.  In  fact,  if  some 
Structured Analysis diagramming convention is in use in a given shop, it makes sense to just 
expand on whatever convention was used for analysis. 

Clearly there is a great opportunity for powerful picture-drawing tools to assist in the design and 
development process. It would be nice to be able to "explode" a process and see its structure at 
the next lower level [DrawFBP, described elsewhere on this web site, supports this], or look at a 
connection and see the data stream that passes over it. When building networks, it would be even 
nicer to be able to pick up an icon for, say, Collate, and place it on the diagram, complete with 
"sticky" ports ready to be connected to its neighbours. 

We have drawn a number of pictures in what has gone before, but we have yet to talk about how 
we get these into the machine to be executed. 

The  very  first  FBP  software,  AMPS,  was  written  in  IBM  S/360  Assembler  language,  and 
networks  were  also  expressed  using  Assembler  macros.  Each  process  was  specified  using  a 
single macro call, which also listed the named connections between that process and the other 
ones. In what follows, I will use a simple network and show how it was specified to the system in 
the various FBP dialects. Let us take as our sample network the following: 
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Figure 23.1 

In AMPS and DFDM ports are specified numerically, so I have marked the ports as numbers in 
this diagram. (In DFDM input and output ports were numbered separately, while in AMPS one 
set of numbers covered both - this diagram follows the DFDM convention). 

In AMPS this would have been specified approximately as follows (we will use PROCESS rather 
than the actual macro name used, to show the analogies with present-day terminology): 
     PROCESS PROG=A,AQ=Q1
     PROCESS PROG=A,AQ=Q2
     PROCESS PROG=B,AQ=Q3
     PROCESS PROG=C,Q=(Q1,Q2),AQ=Q3
     PROCESS PROG=D,Q=Q3

Figure 23.2 

where the PROCESS macro shows a process, Q= lists the queues inputting to the process (feeding 
the process), and AQ lists the queues fed by the process. Communication between processes is 
thus set up by naming the connections (called "queues" in AMPS). [There is no other reason to 
name connections.]  Numbering is sequential, starting with Q= and then going on through AQ=. 
Parameters could also be specified in the network, and were added using PARM= as an address-
type  parameter  on the  PROCESS macro,  when required. As each macro describes a separate 
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process, there is no need to distinguish between different uses of the same component (indicated 
by the PROG= parameter). 

Notice  a  concept  common  to  all  the  varieties  of  FBP:  when  more  than  one  output  port  is 
connected to one input port, it is treated as one connection (queue). Connections can be many-to-
one, but not one-to-many. 

Parameters in AMPS were more general than DFDM's: an AMPS parameter could be a data 
structure of any form, while DFDM parameters were always variable length character strings - 
DFDM's  were  consistent  with  the  format  of  parameters  passed  to  a  job  step  by  the  MVS 
operating system. 

DFDM has two different notations: interpreted, which is used to build the network dynamically 
at  run-time,  and  compiled,  where  the  control  blocks  for  the  network  are  built  as  a  single 
Assembler  program,  which when compiled  and link-edited results  in  a  ready-to-run network 
control  block structure.  The interpreted notation allows a program to be modified and tested 
many times during a session. Test components can also be added easily to monitor the contents 
of  connections  or  to  create  test  data.  The  compiled  format  does  not  have  the  interpretation 
overhead, but takes a little longer to generate, so is more appropriate when a network is put into 
production  or  you  want  to  study a  program's  performance.  Once  you  are  ready to  go  from 
interpreted to compiled format, you use a utility program (called "Expand") to do the conversion. 
The other main difference is that, in the interpreted case, components are loaded dynamically at 
run-time,  while  in  the compiled  case all  the components  are  linked together,  along with the 
network, into a single load module [a single executable block of code, rather like a present-day 
.exe file] . 

Both  of  these  DFDM  notations  are  based  on  specifying  a  list  of  connections,  rather  than 
processes.  These  connections  specify  the  processes  which  they  connect,  but  are  themselves 
unnamed. Processes are named by component name, plus an optional qualifier, where a qualifier 
is indicated by a period. The interpreted notation uses arrows (->) (originally also ampersands 
(&)) to indicate connections. Port numbers are shown before and after the connection mark (if not 
specified, the default is 1). Connections can be strung together in "paths", with a comma marking 
the end of a path. Earlier versions of DFDM did not mark the end of a network, but the Japanese 
version used a semi-colon. So the above diagram in DFDM interpreted notation would read as 
follows (since in DFDM input and output ports are numbered separately, C has input ports 1 and 
2, and output port 1): 
A -> C -> D,
A.X -> 2 C,
B -> D;

Figure 23.3 
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where we have distinguished the second occurrence of A with the qualifier X (any character string 
would have done). 

The corresponding compiled specification would then be: 
X     NETWORK  
      CONNECT A,C
      CONNECT C,D
      CONNECT A.X,(2,C)
      CONNECT B,D
      NETEND
      END

Figure 23.4 

As can be seen, both notations use the same qualifier notation. 

One other major difference between the interpreted and compiled notations of DFDM is that the 
interpreted notation is hierarchical, whereas the compiled is "flat" (it is "flattened" when it is 
expanded, so that the whole network becomes a single module). In the interpreted notation, you 
can define a subnet, call it G, with "sticky" connections, e.g. 
G:  -> A -> 2 B ->, I -> B

Figure 23.5 

would mean that  G has one input port and one output port which will be connected when G is 
used. Arrows with an open end are the external interfaces of the subnet, in this example, the 
arrow feeding A and the arrow coming from B. 

G's picture therefore looks like this: 
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Figure 23.6 

G has  two  external  ports:  one  input  and  one  output.  These  are  the  arrows  which  cross  the 
"boundary" of  G (shown as a dotted line).  G can therefore be used as an ordinary filter in a 
network, and, like all components, can be used more than once in a network. 

Here is a network which uses G: 
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Figure 23.7 

This might be coded as follows in the interpreted notation: 
     X -> G -> 2 Z,
     Y -> G.2 -> Z

Figure 23.8 

Note that composite components can be qualified just like elementary components - at this level, 
the network doesn't know that G even is a composite. If this network is then expanded to form a 
single flattened network, you will see two instances each of I, A and B, as follows: 
X     NETWORK  
      CONNECT X,A.1
      CONNECT I.1,B.1
      CONNECT A.1,(2,B.1)
      CONNECT B.1,(2,Z)
      CONNECT Y,A.2
      CONNECT I.2,B.2
      CONNECT A.2,(2,B.2)
      CONNECT B.2,Z
      NETEND
      END

Figure 23.9 

The Expand function automatically assigns qualifiers to all the resulting processes. Composite 
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components like G can be coded in the same file or file member as the network which references 
them or in a separate file or file member. 

When the network using G is expanded, you see that G loses its identity and merely becomes a 
pattern within the total network. Since I has no inputs, and G has lost its identity at run-time, all 
the I's will start up at start of run. 

One other thing to notice is that the expanded list is not very easy to grasp. People generally find 
that it is easier to work with the interpreted form for two reasons: you can see the effect of a 
modification immediately, and also an individual network or subnet is easier to understand when 
it has no more than about 7 processes (human short-term memory seems to be able to handle 7 
plus or minus 2 objects), so you can build up quite complex applications, as long as they are built 
up out of layers none of which exceed more than about 7 processes. Ideally of course this should 
be done using a graphic interface, but we did not have such tools available. 

In  the  experimental  THREADS  system  mentioned  above  [the  C  implementation  of  FBP 
concepts], we have both an interpreted and a compiled network specification. Here is a rather 
trivial  example  of  a  THREADS network  in  the  interpreted  notation  to illustrate  some of  its 
features: 
'data.fil' -> 
    OPT Reader(THFILERD) OUT -> 
    IN Selector(THSPLIT) MATCH -> 
    IN Replicate(THREPL) OUT[0] ->
    IN Display(THVIEW),
    Replicate OUT[1] -> IN Display,
   '11,2,0' -> OPT Selector;

Figure 23.10 

This represents the following network: 
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Figure 23.11 

The above notation follows DFDM in that you trace a path until you hit a dead end, insert a 
comma and then start on the next path, and so on until the whole network is specified. 

Where DFDM named processes by giving a component name plus qualifier, THREADS names 
processes directly, and attaches a component name in brackets to one of the occurrences of the 
process name. Ports are named, rather than numbered, so the notation for a connection is: 
 ... process-name port-name -> port-name process-name ...

Figure 23.12 

As befits the "C" basis of THREADS, elements of array-type ports are identified by 
     port-name [ element-number ]

Figure 23.13 

numbering up from zero. 

The end of a network is marked with a semi-colon. 

The other major way in which THREADS differs from AMPS and DFDM is its concept of Initial 
Information Packets (IIPs). These are shown as quoted strings followed by arrows (indicating 
that these are really a special form of connection), e.g. 
'data.fil' -> OPT Reader(PROCR) ....

Figure 23.14 

This attaches the string "data.fil" to port OPT of Reader in such a way that when Reader 
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does a receive from its OPT port, the string is turned into a "real" IP and becomes accessible 
to  Reader's code. After processing,  Reader has to dispose of it as usual. If  Reader does a 
receive from that port again, it will receive an "end of data" indication. 

Automatic ports can be specified by putting an asterisk in place of a port name. 

You can also specify subnets following the main network in the same file, or as separate files, 
which are started with a label (symbol followed by a colon) and terminated with a semi-colon. 
Here is an example of a THREADS network definition together with some subnets: 
'data.fil' -> OPT reader(R1) OUT ->
  IN  thcount(THCOUNT) COUNT ->
  MIN display(C1),  
  'H' -> MOPT display;
C1:
 MIN => IN process_C(THVIEW), 
 MOPT => OPT process_C OUT => MOUT;
R1:
OPT => OPT reader(THFILERD) OUT => OUT;

Figure 23.15 

Process names only have to be unique within a given subnet, so the two uses of Reader do not 
conflict.  You  will  also  notice  that  the  port  names  on  the  subnets  are  identified  with  the 
corresponding internal ports by means of an arrow-like equals sign (=>). This is to stress the fact 
that  these  are  not  really  connections,  but  are  more  like  equivalences.  In  both  DFDM  and 
THREADS, a subnet may specify ports which are not used in the network referencing it, but the 
reverse situation is not allowed (if a port is referenced at a higher level, it must be specified in the 
definition of the subnet). 

THREADS also has a compiled format - it differs from DFDM in that it does not generate the 
control blocks directly, but is still a list of the connections, in fixed format rather than in free 
form. The advantage of this is that we can change the implementation of the THREADS Driver 
and the  format  of  its  control  blocks,  without  the  user  having to recompile  all  of  his  or  her 
applications. 

I have gone into some detail on the various approaches to notations because, for many jobs, the 
network  notation  is  all  the  code  a  programmer  ever  has  to  write!  Whether  we  name  the 
connections  or  the  processes,  all  we  are  really  doing  is  telling  the  machine  about  a  list  of 
connections. As such, sequence really doesn't matter, so, even if you feel this should be called a 
programming language, it is definitely a non-sequential one! It also has a natural relationship 
with pictures, so in the future we hope there will be graphical tools which will make entry of this 
information  into  the  machine  even  easier.  [Such  a  tool  has  since  been  developed  -  called 
DrawFBP - and is described in Appendix D, recently added to the online version of the book.]  
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For debugging conventional  languages,  we are just  starting to get  packages which allow the 
developer to walk through a program interactively - a graphical aid to debugging FBP networks 
should allow you to monitor the data passing across a connection, or track a single IP as it travels 
through the whole network and observe its transformations. As with any debugging tool, the real 
challenge is to provide ways for the developer to build mental models, both of the program the 
way it should be working, and also of how it is going wrong. 
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[References to TR1 in the text refer to an application component which is used in examples  
earlier in the book - see Chapter 10. TR1 "extends" detail records by multiplying a quantity in a  
detail  record by a unit  price obtained from a master record in another file.  Processes "up-
stream"  of  TR1  have  merged  masters  and  details,  so  TR1  is  fed  a  single  merged  stream  
containing  masters  and  details,  and  with  related  records  delimited  by  special  IPs  called  
"brackets".] 

It has been noted by several writers that there seems to be a good match between compiler theory 
and the theory of sequential processes. FBP processes can be regarded as parsers of their input 
streams. 

The component labelled TR1 in the example in Chapter 10 can be considered as a "parser", while 
the  structure  of  its  input  stream  can  be  specified  using  a  syntactic  form  called  a  regular 
expression. This allows a number of the concepts of modern compiler theory to be applied to it. 
Let us express the input stream of component TR1 in that application as a "regular expression", 
as follows: 
{ ( m d* ) }*

which can be read as: 

      zero or more groups of: 
        one open bracket, 
        one master IP (m), 
        zero or more details (d), 
        one close bracket 
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(In what follows, I will use brackets to represent bracket IPs, and curly braces will have syntactic 
meanings.) 

Each  of  TR1's  output  streams  consists  of  repeating  strings  of  identical  IPs.  Representing 
modified masters as m', extended details as d' and summaries as s, we get the following "regular 
expressions" for the three output streams: 
 m'*
 d'*
 s*

Each of these output streams has a well-defined relationship with the input stream, and it would 
be very nice if some notation could be developed to show this relationship clearly and concisely.  
In fact, this would constitute a complete description of what TR1 does: a component's function is 
completely described by its input and output streams, and the relationships between them. 

In  Aho  and  Ullman's  1972  book  they  show  that  a  regular  expression  can  be  parsed  by  a 
deterministic  one-way finite  automaton with one tape,  usually referred to simply as a "finite 
automaton". This tape contains "frames", usually containing characters, but in what follows we 
shall think of the frames as containing entire IPs.  As each frame is scanned, the automaton may 
or may not change state, and may or may not perform an "action", such as reading or writing a 
frame. Whether or not there is an action, the tape continues moving. 

A convenient way to represent the various state changes is by means of a "Transition Graph", 
where each node represents a state, and each arc represents a transition from one state to another 
(or from a state to itself), and is marked with the name of the IP being scanned off, as follows: 

Figure 24.1
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In these diagrams,  e is  used to indicate  the "end of data" condition;  m,  d,  ( and  ) represent 
masters, details, open and close brackets, respectively.  Since an open bracket is always followed 
by a master in this example, I have shown them combined on a single transition arc. 

An alternative to the transition graph is the "State Table". This uses a tabular format, which is 
often more convenient. The following table is equivalent to the preceding diagram. 
State Input | New State
------------|-------------
q0     (m   |    q1
q0     e    |    qf
            | 
q1     d    |    q1
q1     )    |    q0
            |
qf          |  Final State

Figure 24.2

Aho and Ullman  next  show that  any regular  expression  may be  described  by a  right  linear 
grammar, expressed as a series of productions, each of which describes a pattern in terms of the 
sub-patterns or final symbols which make it up. 

Productions can be understood in a generative sense - i.e. all legal streams can be generated by 
successively  taking  choices  from  the  set  of  productions,  starting  with  S.  Alternatively, 
productions can be used to describe relationships between patterns being scanned off by a parser. 

A grammar is called "right linear" if patterns on the right-hand side may only occur at the end of 
a production. Here is a right linear grammar which is equivalent to the "regular expression" given 
above, using the notation of productions, but using lower-case letters to represent IP types, as in 
the state diagram above.  means a null stream. 

S -> 
S -> (mR 
R -> )S 
R -> dR

where the two lines starting with  S indicate two patterns which both constitute valid  S's,  and 
similarly for the two lines starting with R. 

Since lower-case letters in the productions represent objects that cannot be parsed further (i.e. 
IPs), upper-case letters may be thought of as representing expectations or hypotheses. Thus R in 
the above productions represents "that part of a stream which can follow a master or detail". 
Thus, when a master is detected, the automaton's expectation of what may follow changes from 
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what it was at the beginning of the stream, and, when a close bracket is detected, it changes back. 
This exactly mirrors the state changes of the finite automaton shown above. 

While the right linear grammar shown above adequately represents the automaton traversing the 
stream one IP at a time, it cannot "see" patterns which consist of more than one IP, and therefore 
cannot express one's intuitive feeling for the hierarchic structure of the IP stream.  For this we 
must go to a more powerful class of grammar, called the context-free grammars. 

The set of context-free grammars (CFGs) is a superset of the set of right linear grammars, in that 
a pattern symbol is allowed to occur anywhere on the righthand side of a production. Since CFGs 
are more general than right linear grammars, they require a more complex type of automaton to 
process  them:  the  "pushdown  automaton"  (PDA),  which  has,  in  addition  to  its  input  tape, 
memory in the form of a "pushdown stack".  This may be thought of as containing subgoals or 
hypotheses established during stream processing, to be verified or discarded. 

The following set  of productions of a context-free grammar is  also equivalent to the regular 
expression given above: 

S ->  
S -> AS 
A -> (mT 
T -> ) 
T -> dT

where you will notice that pattern A appears at the beginning of the right-hand side of the second 
production. The first two productions together can therefore be read as follows: a stream consists 
of zero or more A patterns (or substreams). 

A pushdown automaton will have "stack states" in addition to "automaton states": in this example 
the automaton state is trivial, as there is really only a "normal" state (q0) and a "final" state (qf), 
to enable the automaton to stop. 

In the following diagram, Q means "automaton state" and S is the "stack state" ( - means empty, 
and x means that there is an x at the top of the stack). It will be noticed that "push" and "pop" 
change the "stack state" in the same pattern we saw in connection with the "automaton state" in 
the Transition Graph shown above.  Q' and S' mean the new states of the automaton and the stack 
respectively. 

Q     S  Input |  Action    Q'    S' 
---------------|-----------------------
q0    -    (m  |  push A    q0    A
q0    A    )   |  pop A     q0    -
q0    A    d   |  pop A/    q0    A
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               |   push A
               |
q0    -    e   |    -       qf    -
               |
qf             |    Final State

The actions denoted 
push x
pop x
are to be read as "push IP x onto stack," and "pop IP x from stack," 
respectively.

Figure 24.3

You will recognize that this use of the stack exactly parallels the use of a stack in FBP to hold IPs 
being worked on. 

In FBP we restrict the use of the stack as follows: while an IP is in the stack, it is not available 
for use by the component's logic. It must therefore be "popped" off the stack to make it available 
for processing. At the end of processing, it must be explicitly disposed of before the automaton 
leaves that state, either by being returned to the stack, or by being sent or dropped.  This is the 
reason for the pop/push combination - if we weren't using an FBP implementation, we could 
leave it out altogether, as it leaves the stack state unchanged, but in FBP it is required in order to 
make A available for processing. 

It can be seen from the above that the only function of the state Q is to determine when the 
automaton has reached a final state - the rest of the time the automaton is in its normal state. The 
two states of the stack correspond one-to-one with the states  q0 and  q1 in the non-pushdown 
automaton, so that the stack has a dual function: that of storage for IPs being worked on, and 
control. This exactly mirrors the way FBP uses a stack for holding control IPs. The process of 
stacking a subgoal which represents a substream corresponds to the FBP concept of stacking an 
IP to denote the entire substream. 

Where do we go from here? There has been quite a lot of work on describing applications using 
PDAs,  but  I  am not  aware  of  much  work  tying  them together  with  data  streams  (I  would 
appreciate hearing about such work). This seems to me a fruitful direction for more research, and 
may yield new ways of looking at applications, or even new hardware designs. 
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[References to TR1 in the text refer to an application component which is used in examples  
earlier in the book - see Chapter 10. TR1 "extends" detail records by multiplying a quantity in a  
detail  record by a unit  price obtained from a master record in another file.  Processes "up-
stream"  of  TR1  have  merged  masters  and  details,  so  TR1  is  fed  a  single  merged  stream  
containing  masters  and  details,  and  with  related  records  delimited  by  special  IPs  called  
"brackets". 
Collate refers to a general, "black box", reusable component that merges 2 or more streams on  
the  basis  of  parameters  describing  the  location  of  control  fields  in  its  incoming  IPs,  and  
optionally inserts grouping IPs called "brackets" into its output stream. It is described in some 
detail in Chapter 8.] 

It is easy to see that an FBP component can be regarded as a function transforming its input 
stream  into  its  output  stream.  These  functions  can  then  be  combined  to  make  complex 
expressions just as, say, addition, multiplication, etc. can be combined in an algebraic expression. 
A number of languages have used this as a base for notations. Let me take a simple example:
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Figure 25.1

If we label streams as shown with lower case letters, then the above diagram can be represented 
succinctly as follows: 
c = G(F(a),F(b))

I deliberately used F twice to underline the fact that the same function can be used many times in 
the same expression. Of course, this relies on the function having no side effects - this is one of 
the desirable characteristics of functional languages (and one of the qualities which are desirable 
when designing FBP components). We will return to this point later on. 

Now we have seen that streams are made up of patterns of IPs, which in turn have fields or data 
items. Is it possible to carry functional notation to the point where we can actually build systems 
processing real data? I believe it is, but in a way that will not be as "mathematical" as most 
treatments of recursive programming. In the rest of this chapter, I will develop the concepts of 
recursive stream definitions. But first, for those of you whose math is a bit rusty, we should talk 
about what exactly are recursive definitions. The rest of you can skip ahead! 

Recursive techniques are often taught using the formula for factorials as an example. A factorial 
is the product of all the integers greater than zero up to and including the number whose factorial 
you want to calculate. Factorials can be (and often are) calculated iteratively. i.e. 
factorial(x):
    a = 1
    do varying y from x to 1 by -1 
        a = a * y
    enddo
    return a
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Now, the classic expression for calculating factorials really does the same thing, but it does it 
recursively, as follows: 
factorial(x):
    if x = 1
        return 1        
    else
        return x * factorial (x - 1)
    endif

Here we see that "factorial" is actually defined in terms of itself, but used on a "smaller" part of 
the problem. Since we use factorial on x-1 , and the first test is always to see if we have reached 
1, we are actually getting one step closer to our goal each time around the definition. If you want 
to visualize how this might execute, think of a stack holding the environment for each invocation 
of factorial. Each time we start a factorial calculation, we push the information we will need onto 
the stack, so the stack gets deeper and deeper. When we eventually get a true condition on the 
first test, we can calculate a factorial (1) without pushing a new environment on the stack. Now 
we can finish all the factorial calculations (in reverse sequence), so that eventually we arrive back 
at the top of the stack and we're finished. Speakers of German will be familiar with a similar 
phenomenon which occurs in that language, where several "contexts" may be "stored" until the 
end of the sentence, at which time each context is terminated with the production of an infinitive 
or past participle. 

The advantage of the recursive definition is that it has no local storage variables. We therefore 
suspect that this characteristic may have a bearing on some of the problems we identified earlier 
in this book with the "pigeon-hole" concept  of storage.  Functions also ideally  have no side-
effects, so they can easily be reused. If we combine these concepts with some other concepts 
which  have  appeared  in  the  literature,  we  can  actually  describe  (a  small  piece  of)  business 
processing in  a  way which  is  free  from a number  of  the  problems which  bedevil  the  more 
conventional approaches. I also believe that if you look back at Chapter 18, you will find that 
there are similarities between that notation and what will be pursued more rigorously in this 
chapter. Admittedly this will be a tiny example, but my hope is that someone will be sufficiently 
intrigued that they will carry it further. 

Recursive  functions  are  attractive  to  mathematicians  because  they  have  no  side-effects,  and 
therefore are easier to analyze and understand. In W.B. Ackerman's paper (1979) he states: "the 
language properties that a data flow computer requires are beneficial in their own right, and are 
very  similar  to  some  of  the  properties  that  are  known  to  facilitate  understandable  and 
maintainable software, ...."  Some of these beneficial properties are as follows: 

• locality of effect 

• freedom from side effects 
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• "call by value" 

Ackerman defines an applicative language as one which does all of its processing by means of 
operators applied to values. The earliest known applicative language was LISP. 

By now you should be familiar with the use of the term "stream" in FBP to describe the set of IPs 
passing across a particular connection. The stream does not all exist at the same time, but is 
continuously being generated at one end and consumed at the other. However, it has a "real" 
existence, and it can be manipulated in various ways. W.H. Burge (1975) showed how stream 
expressions can be developed using a recursive, applicative style of programming. D.P. Friedman 
and D.S. Wise contributed a number of papers relating applicative programming to streams by 
adding  the  concept  of  "lazy  evaluation"  (1976)  to  Burge's  work.  This  style  has  the  desired 
freedom from side  effects  and  has  another  useful  characteristic:  the  equals  sign  is  really a 
definition statement, and can be used for proving the validity of programs as well as for doing the 
actual data processing. Such a language is called "definitional". 

Quoting W.B. Ackerman (1979) again: "Such languages are well suited to program verification 
because the assertions one makes in proving correctness are exactly the same as the definitions 
appearing in the program itself."  One can put a restriction on assignment statements to the effect 
that the definition should not assign a value to a given symbol more than once in a single scope. 
Thus a statement like 
J:=J+1

is ruled out because "J" would have to be given an initial value within the scope, resulting in two 
assignments within that scope.  Also, viewed as a definition, it is obviously a contradiction!  A 
number of writers on programming have described their feelings of shock on their first encounter 
with this kind of statement, only to become so used to it over the years that they eventually don't 
notice anything strange about it! 

We shall now talk a little bit about the possibility of writing programs in a way that avoids the 
problem of rebinding variables within a scope, following (Burge 1975) and (Friedman and Wise 
1976) in the area of stream functions. 

Typically, like the definition of factorial shown above, the desired output is defined in terms of 
two functions: 

• a function of the first item in the stream 

• a function relating this item to the rest of the stream 

• and a termination rule specifying a value to be returned when the function bottoms out. 

The following example resembles the definition of factorial shown above, but moves closer to 
business applications. Even though it may not much resemble the type of business applications 
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that you are accustomed to, you will have to admit that it is very compact! Suppose we want to 
count all the IPs in a stream. Then, analogously to the factorial calculation above, we could write 
a "counter" function F as follows: 
F(S) = if  S is null,
     then  0,
     else  1 + F(rest(S))

where the result is specified directly by a value, e.g. 0, or 1 + F(rest(S)). 
With respect to the rest of this notation, functions are expressed using the conventional bracket 
notation, and sublists will  be specified by means of curly braces.  For instance,  {w,x,y,z} is a 
sublist consisting of w, x, y and z. null tests for a stream with no IPs in it, i.e. {}; first(S) is the 
first IP of a stream, i.e. w in the above example, and rest(S) is a list comprising all the rest of the 
IPs in the stream, i.e. {x,y,z}. Notice that, while rest returns a list, first only returns a single IP. 

In this first example, F is called recursively to return a value based on processing a stream S. At 
each invocation of F, its environment (the part of the stream that it can see) is pushed down on a 
run-time stack. When an invocation of  F finds itself looking at an empty stream, the null test 
returns true, F bottoms out, and the stacked environments are progressively popped up, until the 
original  one  is  reached,  at  which  point  the  process  stops.  Notice  that  there  is  a  family 
resemblance between recursive definitions which only "recurse" at the righthand end, and right 
linear grammars (described in the previous chapter). This kind of recursive definition can also 
have special processing applied to it which maintains the stack at a constant depth. 

Now so far we haven't actually used the data in the stream IPs. Suppose therefore that we want to 
sum all the quantity fields in a stream of IPs. We will introduce the convention a:x to mean "field 
a  of  x".  This  notation and the "mini-constructor"  notation described below are based on the 
Vienna Definition Language, developed some years ago by the IBM Laboratory in Vienna. The 
desired calculation can now be expressed recursively as follows: 
 
F(S) = if    S is null,
        then  0,
        else  q:first(S) + F(rest(S))

where q is the quantity field of an IP. 

So  far,  we  have  only  generated  a  single  quantity  from  our  stream.  To  do  anything  more 
complicated, we will need to be able to generate IPs and string them into streams. To do the 
former, we will need something which can build an IP given a set of values for its fields. We will 
use  a special  function for this  which I  will  call  the "mini-constructor"  (µ). This takes as its 
argument a list of selector symbols and values, and returns as a result an IP with those values 
inserted into the fields designated by the selectors. A selector and its  value are separated by 
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commas,  while  selector/value  pairs  are  separated  by  semi-colons.  The  mini-constructor  is  a 
concise way of specifying how new IPs are to be built. 

To combine IPs into a stream, we use a variant of the well-known list-processing function cons, 
which was first used in functional languages to join two lists together. The following equivalence 
holds: 
  a = cons(first(a),rest(a))

Friedman and Wise (1976) have extended this concept by removing the requirement that both of 
the arguments of cons be available at the same instant of time. Their "lazy cons" function does 
not actually build a stream until both of its arguments are realized - before that it simply records a 
"promise" to do this. This allows us to imagine a stream being dynamically realized from the 
front, but with an unrealized back end. The end of the stream stays unrealized until the very end 
of the process, while the beginning is an ever-lengthening sequence of items. 

Suppose we want  to  create  a  stream of  extended details  (where  the  quantity  field  has  been 
extended by the unit price for the product): if the unit price were repeated in every IP, there 
would be no problem, as all  the information that  a particular call  to the function requires is 
immediately available.  Assigning selectors p, s, d, q, u, e to product number, salesman number, 
district number, quantity, unit price and extended price, respectively, we would then be able to 
define the extended details stream as follows: 
F(S) = if S is null,
        then null
        else cons (E(first(S)), F(rest(S)))
   
E(x) = µ(p,p:x; s,s:x; d,d:x; u,u:x; e,q:x*u:x)

where E is a function which creates a single IP. The expression after the last semi-colon in the 
definition of  E(x) would read in English: "set the extended price field of this IP to unit price 
multiplied by quantity". This would be fine except for the fact that unfortunately the unit price is 
not in the same IP as quantity! 

In fact, in the case of the merged stream being processed by TR1, the unit price for a given 
product is held in only one IP per substream - namely the master IP for that product. We could 
define a function "PM" ("previous master"), but that would violate the rule that a function can 
only "see" an IP optionally followed by its successors.  Instead, let us broaden the concept of first 
and rest to work with lists of lists (just as LISP and the other functional languages do). 

This concept of lists of lists allows us in turn to take advantage of the fact that a stream can 
automatically be structured into substreams by a Collate type of component. Thus, suppose the 
output of a Collate run is as follows: 
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 ((m1,d11,d12),(m2,d21),(m3,d31,d32,d33))

where brackets represent bracket IPs. Then to convert this logically into a structure of lists and 
sublists, merely replace the open and close bracket IPs with curly brackets, i.e. 
 S:= {{m1,d11,d12},{m2,d21},{m3,d31,d32,d33}}

Now first and rest at the list level will return sublists, i.e. 
first(S):= {m1,d11,d12}
 and 
rest(S):= {{m2,d21},{m3,d31,d32,d33}}

Note that, analogously to what we saw above with simple lists, first reduces the "nesting level" of 
a list by one level, while rest leaves it unchanged. The processing for extended details can now 
be shown succinctly as follows: 
F(S) = if S is null,
      then null
      else cons(G(first(S)), F(rest(S)))
G(x) = G'(first(x),rest(x))
G'(x,y) = if y is null,
      then null
      else cons (E(x,first(y)), G'(x,rest(y)))
E(x,y) = µ(p,p:y; s,s:y; d,d:y; e,q:y*u:x)

Here the one-argument function G is defined in terms of a two-argument function G', whose first 
argument is always a master IP, and E now takes two arguments instead of only one. 

In the above it can be seen that we will generate one output IP for each incoming detail (all IPs 
within a lowest level substream are details except the first one, which is the master). We can also 
see that  x in  G' acts as a place-holder for the master IP - it remains unchanged throughout the 
whole evaluation of function G. 

Now let's repeat the three tables from Chapter 18 which describe the same calculation, and you 
will see that essentially the same information is captured, without the use of recursion, but also 
without  using  any  variables.  It  seems  therefore  that  these  tables  must  have  an  underlying 
relationship with the functional expressions shown above. 

The three tables from Chapter 18 respectively describe 

• the relationships between input and output streams: 
INPUT STREAM
1. Merged Input
 2. Product Substream: REPEATING
  3. Product Master
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  3. Sales Detail: REPEATING
OUTPUT STREAMS
1. New Masters
 2. Product Master: ONE PER Product Substream
1. Sort Input
 2. Sales Detail: [ONE PER Sales Detail]
1. Report-1
 2. Product Summary: ONE PER Product Substream [,NEW]

• the layout of the individual IPs, e.g.: 
Extended Detail: 
{
  Product Number: IDENT, 
  Salesman Number: IDENT, 
  District Number: IDENT, 
  Quantity: QUANTITY, 
  Unit Price: $CDN, 
  Extended Price $CDN;
}

• and the derivation rules for computed values: 
        Name            |       Derivation       
  ---------------------------------------------------
                        |
   New Master           |
     Year-to-date Sales |   Year-to-date Sales
                        |      [IN Product Master]
                        |         + Product Total
                        |
   Extended Detail      |
     Extended Price     |   Unit Price * Quantity
                        |
                        |
   Product Summary      |
     Product Total      |   SUM of Extended Price
                        |       [OVER Product Substream]
                        |
     Year-to-date Sales |   SAME as IN New Master
                        |

All  these  items  [well,  many]  can  be  found  in  a  more  mathematical  form  in  the  recursive 
expressions given above, but it appears that, in this particular case, the same information content 
can be expressed almost as succinctly using a quite simple notation which does not require any 
mathematical expertise at all. We have alluded above to the need to minimize the gap between 
the business requirement and the means of expressing it. What is the absolutely most concise way 
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of expressing the requirement "build a stream of IPs containing extended quantities calculated as 
follows: ..." to a machine? In a 1990 article, K. Kahn and V. Saraswat suggest that it may not 
even have to be text  as  we know it  -  they propose that  it  may be possible  to  express  both 
definitions and execution using a visual notation with almost no text at all, except for strings and 
comments. They point out that a major use of names is to make connections, something they are 
not particularly well suited for! Now look at the above figures and try to imagine how you could 
replace all  those names by arrows connecting  various  types  of  icons  (as  few as  possible  of 
course). 

Part of my motivation in this chapter (and in this book as a whole) is to try to shake up some 
preconceptions about how programming has to be done! We cannot predict where the next break-
through will be made, so it is important that we remain as open as possible to new ideas and new 
ways of doing things. The above concepts also suggest some desirable characteristics that these 
new ways should have, so we can measure whether we are moving in the right direction or away 
from it. As I shall suggest in the last chapter of this book, everyone should have their minds 
stretched regularly, and this kind of exercise is nowhere more important than in the computer 
business! 
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Object-Oriented  Programming  (abbreviated  in  what  follows  to  OOP)  has  captured  the 
imagination of a sizable, and influential, segment of the computer world, and understandably so, 
since it promises solutions to many of the problems which confront our industry. Not only does it 
have proven successes in the area of user interfaces, but it offers the very inviting prospect of 
libraries of reusable programming components which can be bought and sold on the open market. 
On the other hand, its very success has resulted in its being broadened until the term OOP now 
covers a wide spectrum of different technologies with a few basic concepts in common. The 
literature on the subject is confusing to the uninitiated, and the more one reads about the subject, 
the more different  variations  one encounters,  all  rallying  behind the Object-Oriented banner. 
Given all the excitement, I have spent some time trying to understand what is being offered and 
what it can do for us. This chapter is the result of this work, and I hope that some readers will 
find it helpful. Naturally, one of the effects of the diversity of different views about what OOP is 
is  that  almost  any comment  I  may make  about  it  can  be  countered  by someone who has  a 
different view, but I base these observations mostly on the most widespread dialects of OOP, so I 
believe they have some validity. 

Before I go any further, I would like to say that I believe FBP shares many characteristics with 
OOP, but at this point in time I hesitate to call it object-oriented, as there are certain fundamental 
differences of approach. However, after reading this chapter, some of my readers may conclude 
that  any  differences  are  basically  surface  differences,  and  that  FBP  is  an  object-oriented 
technology. Interestingly, Rob Strom, who developed NIL (Strom and Yemini 1983), described 
in the next  chapter,  which has strong similarities  with FBP, tells  me that  initially  his group 
thought it important to disassociate themselves from OOP, but recently they have come to feel 
that OOP is now so broad and there are so many similarities between NIL and OOP that they are 
now actively working with the OO community. 
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OOP is also another perfect example of the gap between business and academia that I talked 
about earlier: a lot of the interesting research work on OOP is hard to apply to business needs, 
while  business  badly  needs  technologies  which  can  ease  the  burden  of  developing  and 
maintaining  application  code.  When  academics  start  using  payroll  applications  for  their 
examples, rather than rotating squares and rectangles, we will know that we have turned a corner! 

It is generally accepted that the first OOP system was Smalltalk, from Xerox PARC, although 
some writers identify Simula as the first OO language. It seems that many people today still 
consider  Smalltalk  the  archetypal  OOP  language,  although  it  is  many  ways  a  "small" 
implementation of the concepts, by which I mean that it is great for exploring a number of the 
OOP concepts, but it is not clear that its concepts scale up to large-scale business applications. I 
have worked with Digitalk's Smalltalk V/PM, so most of my examples will be drawn from that 
system. C++ is a different, and in some ways more pragmatic, approach to implementing object-
oriented concepts, which is gaining increased acceptance, but, since it is a hybrid between OO 
concepts and a conventional HLL, its users have to contend with a more complex mental model. 
A different approach to hybridizing a HLL with OO concepts is Brad Cox's Objective-C (1987), 
which is not as well known as the other two, but also has a number of interesting concepts. All of 
these languages are basically control-flow oriented, and therefore suffer from the problems we 
have  described  in  previous  chapters.  A  number  of  workers  in  the  OO field  are  starting  to 
recognize this, and I will be describing some of their work later in the chapter. 

To lay a foundation for discussing the differences and similarities between FBP and OOP, we 
need to talk about a few of the basic concepts of OOP for those not familiar with its concepts. 
The basis of Smalltalk and all OOP systems is the "object", which can be described as a semi-
autonomous unit comprising both information and behaviour. OOP objects are usually selected to 
reflect objects in the real world, and this relationship is a major source of the appeal of OOP to 
application developers (as I mentioned above, it is also a characteristic of simulation languages, 
and also of IPs in FBP). Of course, since real world objects vary widely in size and complexity, it 
becomes far from trivial to decide what the objects in your universe of discourse are going to be. 
Just as it is in conventional programming, it is extremely important to do a good job of modelling 
your data before you start an OO design. The approach of Object-Oriented Analysis is somewhat 
different from that  of conventional data modelling,  but many workers in the field claim that 
proper modelling is even more important with OO as an error at this stage can adversely affect 
your whole design. This is also true of course for FBP. 

One very powerful but non-obvious similarity between FBP and Smalltalk is that they both use 
"handles" to refer to objects (except in the case of Smalltalk integers). When I request a new 
instance of a class in Smalltalk, I get a set of instance variables "out there", and a handle to let me 
refer to it, just as we have seen happens when we create a new IP in FBP. We can then do things 
with this object handle, e.g. send messages to it or use it as a parameter in a message to another 
object. Smalltalk also looks after "garbage collection" of the object if its handle is no longer in 
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use - this function could easily be added to FBP, but as I said earlier we're not sure whether it's 
desirable. 

These object handles are what allows objects to talk to each other. Once we have selected classes 
of objects  which will  represent the real  world objects  of interest  to our application, the next 
requirement  is  that  these  objects  be able to  communicate  -  in  short,  that  their  behaviour  be 
cooperative.  For this function, Smalltalk uses the expressive metaphor of "message sending": 
Smalltalk objects are said to send messages to each other, resulting in activity on the part of the 
receiver, which may in turn send messages on to other objects. This also is a good fit with how 
we think of the real world. Unfortunately, this Smalltalk terminology is misleading if it suggests 
any  kind  of  asynchronous  message  flow,  as  Smalltalk's  "message  sending"  is  purely 
synchronous:  the  sender  has  to  wait  until  the  receiver  comes  back  with  a  reply.  In  today's 
terminology  of  parallel  processes,  the  sender  is  "blocked"  until  the  reply  is  received.  This 
mechanism is essentially equivalent to a subroutine call, and this is in fact how it is implemented 
(with a subtle difference which we will discuss in the next paragraph). Smalltalk does support 
asynchronism  by  means  of  its  fork  and  semaphore  facilities,  but  the  basic  paradigm  is 
synchronous and,  as  we have seen above,  this restricts  the developer in  certain  fundamental 
ways. In C++ (and also sometimes in Smalltalk) this is referred to as "method invocation", which 
is a more accurate description of what is really going on. 

Method invocation is essentially an indirect subroutine call. The caller specifies an operation, and 
it is the class to which the receiver belongs which determines the actual piece of code which is 
executed. In both Smalltalk and C++, each such piece of code (called a "method") is part of a 
class and its address is not directly known to its caller. The caller specifies the function desired 
by naming an object (or the class itself) and the desired function, e.g. it might tell an object of 
class "rectangle" "rotate 90 degrees". The underlying software then uses the class information of 
the object to locate the actual code which is to be executed. 

Although this seems very straight-forward in the classical OO examples, in practice I found it 
really frustrating to me as a user, because it is inherently asymmetrical. Many of these requests 
involve more than one object, so you have to pick one as a receiver, and pass the others (or their 
handles) as parameters. This means that I, as the user, was never quite sure which object should 
be  the  receiver,  and  sometimes  a  series  of  similar  functions  would  flip  back  and  forth 
bewilderingly.  For  example,  when  displaying  a  series  of  data  objects,  I  had  to  use  several 
different  messages,  some of  which  were  sent  to  the  medium object  with  the  data  object  as 
parameter, and some of which were the other way around. Another example: because of this 
problem, Smalltalk has problems with such simple commutative operations as + and *. Smalltalk 
V/PM has actually implemented a facility where, if an operation fails, the system reverses it and 
tries again. This function is only available to primitive operations, and is not even used there 
consistently.  You also have to be careful  not to write methods which go into a closed loop! 
Although some OO dialects, like CLOS, select the method based on the classes of more than one 
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participating object, I would expect that allowing method selection to be based on several classes 
not  only  would  result  in  even  larger  numbers  of  methods,  but  could  result  in  significant 
management problems. 

The indirect call characteristic of OOP systems does provide a degree of configurability, since it 
is true that the caller does not have to know the name of the subroutine which will actually be 
executed. In addition, since different classes can support the same function identifier (sometimes 
called the "selector")  in different ways, you get an additional useful  characteristic sometimes 
called "genericity", which some writers consider the basic characteristic of OOP systems (many 
others don't, though). However, the requester of a function does have to be able to locate the 
object  that  it  wants to  send the message to and also has to  specify the name of the desired 
function, e.g. "print" or "rotate", so we still have a configurability problem, once removed, unless 
the process of identifying the recipient object can be completely externalized from the requester's 
code. Remember, to achieve full configurability we need to be able to hook together components 
into  different  patterns  without  modifying  them  in  any  way,  which  also  means  having  an 
independent specification of how things are connected. This can only be done today by having 
"high-level" methods which specify how things are hooked together. I find it interesting that, in 
most of the literature, the orientation of Smalltalk is very much towards building new classes, 
rather than towards reuse. Applications are developed mainly by cloning old methods, with its 
attendant problems, rather than by using black box code. The very idea of allowing a developer 
to modify the behaviour of an existing class,  even if only for his or her own purposes,  runs 
counter to the reuse concepts described earlier in this book. 

Two last comments about genericity: my (limited) experience is that application developers don't 
use  it  very  much,  and its  main  triumphs seem to  be  in  the  GUI  area.  When  asked to  give 
examples of genericity, writers on OO always seem to pick "display" and "destroy". It may be 
that, in business, you don't often use the same messages for different classes. For instance, at the 
numeric value level, subtracting a number of days from a date is quite different from subtracting 
a date from another date, or a date from days (you can't), so the user has to be very aware of the 
types of the operands. To me this means that it doesn't buy you much to be able to call them all 
"-". In fact, in Smalltalk you often see message names like "subtractDaysFromDate", to tell the 
user  what  types  the  message  expects  (there  is  no  type  checking  at  compile  time,  so  this  is 
particularly important). Now, if you don't make much use of genericity, all you have left is the 
indirect call mechanism, which should be part of any programmer's toolkit anyway! 

The following three attributes seem to be present in all OOP systems to a greater or lesser extent, 
but  they  are  given  different  weights  by  different  writers:  genericity,  encapsulation  and 
inheritance. We have already talked about genericity in OOP. Genericity is also implicit in FBP 
as the same IP can be sent to different processes to achieve different results (and usually is), or 
components can be designed to accept a narrower or wider range of possible input formats as 
determined by reuse considerations. For instance, a Collate could accept only two input streams, 
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or 'n' input streams. It could accept just one input IP format, or many, determined by descriptors 
as we described above. 

Inheritance is  claimed by some to be the major characteristic  of OOP, and it  is certainly an 
important concept, but my personal view and that of other people I have talked to is that its use 
should not be pushed to extremes. As long as inheritance is used to reflect the fact that things in 
real life can usually be grouped into classes which are subsets and supersets of other classes, it 
works quite well, and would in fact fit in quite well with the IP type concept that is implemented 
by descriptors in FBP. For instance, a file might contain records representing vehicles, which you 
would then "specialize" into Volkswagens, Pontiacs, etc., based on a code within the common 
part of the records. Some processing would then be valid for all vehicles, other processing just 
for Pontiacs. If a message cannot be answered by a Pontiac, it is passed up to the "vehicle" level. 
Generally, as you move down the class hierarchy, you add more attributes - so start off with the 
set  of  attributes  common to  all  vehicles.  When  you  discover  that  a  file  record  represents  a 
Pontiac, you now know how to read the remaining attributes. This concept could in fact be added 
quite naturally to the descriptor mechanism of FBP. 

The major difficulty with classification, however, is that, as soon as you try to become more 
analytical about what a class really is, things start to get more confusing. What seems clean and 
intuitive when applied to oak and fir trees becomes less clear when you look at it more closely. In 
fact, the OO concept of "class" seems to involve several different concepts which are combined 
in different combinations in different OO implementations.  For those interested in this topic, 
there is an interesting recent article by W. Lalonde and J. Pugh (1991) which attempts to separate 
out the different ideas underlying the idea of "class". To give you some flavour of this debate, 
consider the difference between a square and a rectangle from an OO point of view. There was a 
recent interesting exchange of letters on this topic in Communications of the ACM, triggered by 
a letter from J. Winkler in the Aug '92 issue: in a hierarchy of geometrical shapes, a square is 
usually defined as a rectangle with all four sides equal. From one point of view, it is therefore a 
subclass of rectangle. However, subclasses usually have more instance variables (attributes) than 
their  superclasses,  while  a  square  can be completely  specified  using  only one measurement, 
instead of two. As if that weren't bad enough, OO rectangles can accept messages asking them to 
change individual dimensions, e.g. "set height to:". If you change a rectangle's height to be the 
same as its width, does it change to being a square, or must you create a new intermediate class - 
that of "square rectangles"? The point is that this is an example of specialization by the addition 
of constraints. There needs to be some general mechanism to specify constraints on objects, and 
we also have to decide whether to use the constraint, e.g. by allowing one dimension to change 
the other, or just use it to detect errors on the part of the client, e.g. "violates constraint - please 
check dimensions". The heading on Winkler's letter is "Objectivism: 'Class' Considered Harmful" 
(Winkler 1992)! 

While human beings naturally try to classify the world to make it easier to grasp, the real world 
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may resist being so classified. As a non-zoologist, I had imagined that all mammals had been 
neatly categorized long ago, so I was amused recently to run into this description of the difficulty 
zoologists encounter in trying to classify the hyrax (Krishtalka 1989): "They resemble a cross 
between a rhinoceros and a rodent. ...the hind limbs have three toes (rhinos), one of which ends 
in a long claw (rodents), the other two in hooflike nails (rhinos)...." The list goes on for a bit, then 
Krishtalka writes: "Such a smorgasbord of physical traits earned a dyspeptic taxonomy.... Recent 
opinion is divided between a horse-rhino-hyrax evolutionary connection and a sea cow-elephant-
hyrax linkage." While this kind of confusion can actually be amusing, our tendency to make snap 
classifications and then act as if they were the whole truth may actually be harmful, either to 
ourselves or to others: while everyone today with a reasonable education knows that whales are 
mammals,  not  fish,  the  old  mental  association  may  be  what  allows  officials  to  refer  to 
"harvesting" whales. We can certainly talk about "harvesting" herring, but we don't talk this way 
about tigers, cattle, butterflies or people, so why whales? If you are interested in this area of 
linguistics,  you should take a look at the work of the linguist B.L. Whorf (1956), alluded to 
elsewhere in this book, on how the words we use affect our actions. 

As  we  move  into  the  world  of  business  programming,  we  run  into  situations  where  class 
hierarchies  may  seem very  natural  at  first  sight,  but  in  fact  are  really  not  appropriate.  For 
instance, it might seem natural to assign a bank account object to one of a set of account type 
classes: SAVING, CHEQUING or COMMERCIAL. This way,  a deposit  could be sent to an 
account and automatically cause the right piece of code to be invoked as a method. While this 
seems quite  attractive  at  first,  in  fact,  at  best  this  would result  in  a  number of  very similar 
methods which would have to be separately managed and maintained. At worst, it could make it 
very difficult to develop new, hybrid offerings, such as a chequing account which offers daily 
interest. Banks have found that it is better to make this kind of processing "feature-oriented" - 
one should decide what are the atomic features of an account, such as interest-bearing or not, 
bankbook vs. statement, cheques to be returned or not, and then implement them under switch 
control to produce the various types of account processing. Hendler gives a somewhat similar 
example  (1986),  using  professions.  He  points  out  that  while  professions  are  often  used  as 
examples of classes, they may not be mutually exclusive - a person might be both a professor and 
a doctor - so a person may carry attributes which relate to both of these professions.  Mixed 
classes provide a possible solution, but this technique has problems as well. In FBP, the "tree" 
technique seems a natural way to implement this kind of thing (see Chapter 12, on Trees), as the 
data associated with each profession can be held in separate IPs attached to the IP for the person. 

In spite of what I have said above, I do believe that one of the most important contributions OO 
has made towards changing the way application design is done is that it has moved data to the 
foreground.  Programmers  coming  to  FBP  from conventional  programming  have  to  undergo 
precisely  the  same  paradigm shift:  from concentrating  on  process  to  concentrating  on  data. 
Typically, in FBP, as we have seen in the foregoing chapters, we design the IPs and IP streams 
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first and then decide what processes are needed to convert between the different data streams. In 
OO you have to decide on the object classes, and then decide what messages each class should be 
able to respond to. 

For many OO enthusiasts it is this concept of "encapsulation" which is the central concept of OO. 
In fact, this is not a new concept at all (one of Dijkstra's famous remarks was that programs 
should be "like pearls"), and Parnas wrote one of the seminal articles on encapsulation in the 
early 70s (Parnas 1972). Encapsulation simply means the idea of having the vulnerable insides of 
something protected by a protective outer coating, sort of like a soft-centred candy (or a turtle). 
This is obviously a good design principle, and the reader will notice that FBP components in fact 
have this characteristic, as they are free to decide what IPs they will accept into themselves, and 
can do more or less validation of their input data,  depending on how reliable their designers 
judge their data to be. Encapsulation can also be implemented at the network level, by having 
outer processes protect inner ones, or by inserting transformer processes into the network. This is 
a better solution than building the validation into every component, as the processing component 
can just  provide the basic  function,  and the designer  can request  more or less validation by 
adding or removing editing processes. In OO, an object is encapsulated together with all of its 
methods,  which involves predicting all  the services  that  an object  may ever  be requested  to 
perform. This, however, is very hard to do, and may result in a never-ending stream of requests 
for enhancements as new requirements come up. How can one predict all the functions that, say, 
steel  might  be used for?  Remember  Wayne  Stevens'  story about an airline attendant  using a 
hearing set to tie back a curtain (recounted elsewhere in the book)! 

In FBP, we always encapsulate processes and can also encapsulate IPs if desired - the former 
occurs automatically as nobody has access to the internals of a process except the supplier: users 
can only know its inputs, outputs, parametrization and some behavioral aspects, such as what it 
does  when it  sees  a  closed output  port.  As  far  as  protecting  IPs  is  concerned,  a  number  of 
techniques are available, as required by the designer, and it is quite possible to have IPs whose 
structure is never seen by application code. However, FBP does not insist that we predict all the 
processes that will ever handle a particular IP type. Rather, the emphasis is on deciding which IP 
types a given process will accept or generate. Instead of having to predict all the uses that steel 
might be put to, we only have to decide which materials we can build a bridge out of. The latter 
seems a much more manageable problem! 

Because Smalltalk's "message sending" terminology sounds like data flow, it is often thought that 
OO should be relevant to distributed systems design, but in fact, as Gelernter and Carriero point 
out in an article analyzing the differences between their Linda (described in the next chapter) and 
OO (Carriero and Gelernter  1989), it  is  actually irrelevant to it.  In fact,  as they say,  a truly 
distributed message passing system has to be built on top of an OO system, just as it does on top 
of a conventional subroutine-based approach. Here is a quote from a paper by another of the 
gurus of this area, Barbara Liskov, and her coworkers: "We conclude that the combination of 
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synchronous  communication  with  static  process  structure  imposes  complex  and  indirect 
solutions, and therefore that it is poorly suited for applications such as distributed programs in 
which concurrency is important" (Liskov et al. 1986). It is interesting that "basic" FBP occupies 
the "asynchronous, static" quadrant of Figure 2-1 of this article, while the addition of dynamic 
subnets moves FBP into the "asynchronous, dynamic" quadrant, which the authors of this article 
say is unoccupied to the best of their knowledge. Interestingly, they go on to say, "Although such 
languages may exist, this combination appears to provide an embarassment of riches not needed 
for expressive power." Our experience, on the contrary, is that adding a dynamic capability to 
asynchronous communication can be extremely productive! 

Most OO implementations are synchronous, so the basic primitive is the indirect call through the 
class. As I said elsewhere in this book, our experience with FBP tells us that the subroutine call is 
not the best foundation on which to build business applications. A "call" can in fact be simulated 
very nicely by issuing an FBP "send" followed by a  "receive".  This will  have the effect  of 
suspending the requester on the "receive" until the downstream process returns an answer, just as 
a "call" suspends the caller. Gelernter and Carriero make the same point and go still further in the 
above-mentioned article: 

"In our experience, processes in a parallel program usually don't care what happens to 
their data, and when they don't, it is more efficient and conceptually more apt [my 
italics]  to  use  an  asynchronous  operation  like  Linda's  "out"  than  a  synchronous 
procedure call.... It's trivial, in Linda, [or FBP] to implement a synchronous remote-
procedure-call-like operation in terms of "out" and "in" [FBP "send" and "receive"]. 
There is no reason we know of, however, to base an entire parallel language on this 
one easily programmed but not crucially important special case."

A call which spans multiple machines is sometimes called Remote Procedure Call (RPC), and a 
number of the people working on distributed systems have pointed out the inappropriateness (as 
well as poor performance) of this algorithm when building complex distributed systems. K. Kahn 
and M. Miller (1988) point out the problems of basing a design for distributed systems on RPC. 
They  also  stress  the  desirability  of  having  a  single  paradigm which  scales  up  from tightly 
coordinated processes within a single processor to largely independent cooperating processes, 
perhaps on different machines. 

FBP and Linda (we will talk about Linda in more detail in the next chapter) are fundamentally 
asynchronous,  whereas  Smalltalk-style  OO is  synchronous.  The  real  difference  here  is  that, 
although the methods of an object are the only routines which can have access to the object's 
internal  data,  when these methods are to  be executed is  determined by other  objects,  whose 
methods in turn are driven by other objects, and so on. While such synchronous objects show 
autonomy of data and behaviour, they do not have autonomy of control.  As such, I feel that 
synchronous  OO objects  are  more  similar  to  FBP IPs  than they are to  FBP processes.  In  a 

- 289 -



Chap. XXVI: Comparison between FBP and Object-Oriented Programming

Smalltalk (not counting "fork") or C++ application, there is actually only one process. This can 
lead to counter-intuitive solutions. For example, in a recent book about C++ (Swan 1991), in an 
example involving a simulation of people using elevators,  the class Building (which is really 
running the whole simulation) apparently has to be treated as a subclass of the class Action. The 
problem, of course, is that there is only one process, external to all the objects, which is basically 
"Run the simulation". 

If you cast your mind back to the Telegram problem described in Chapter 8 [this is the problem 
where text is read in from a file and must be written out in records of a different size, without 
breaking  individual  words],  you  will  remember  that  the  conventional  programming  solution 
required several of the routines to be invoked repeatedly using handles to maintain continuity. 
This solution maps very nicely onto an OO "collaboration diagram" which changes subroutine 
calls  into  "message  sends"  and  "replies"  between  objects  (remember  the  caveat  about  what 
"message sending" actually means). Here is basically Figure 8.10, recast into OO terms (I have 
created 4 "stream" objects: 2 word streams and 2 I/O streams): 

Figure 26.1

While  this  solves  the  problem  of  subroutines  which  have  to  maintain  continuity  between 
successive  invocations  (the  infrastructure  maintains  the  continuity),  this  is  still  a  purely 
synchronous solution. Now let's show an FBP solution to this problem (from Figure 8.2):
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Figure 26.2

[In case you didn't figure it out... in this diagram, RSEQ means "Read Sequential", WSEQ means 
"Write Sequential", DC is "DeCompose" and RC is "ReCompose".] 

Not only is this much easier to grasp intuitively, but it uses reusable components, plus it is very 
obvious how the function can be extended if the designer ever needs to. 

I have tried to show in the earlier chapters that asynchronism is liberating, and I hope I have 
managed to convey some feeling for its power. In fact, many of the leading thinkers in OO also 
realize the need to add asynchronism to OO to relax the tight constraints imposed by the von 
Neumann  machine.  Many  of  today's  advanced  machine  designs  in  fact  require  these 
asynchronous design concepts (for a survey, see a recent (1990) article by Gul Agha). Agha uses 
the term Concurrent  OOP (COOP) to describe his approach,  which combines the concept of 
"actors" with OO. Another term you may run into is "active objects", which act, as opposed to 
"passive objects", which are acted on. In modern user interfaces we already see functions which 
behave much like active objects,  e.g. printers (for printing objects),  shredders (for destroying 
objects), and so on. You just drag and drop the icon (small graphical symbol) of an object, e.g. a 
file, onto a shredder icon - this is like pressing the start button on a trash compactor. Before it 
starts,  however,  the shredder politely asks you if you really want to do this.  This is  another 
characteristic of this kind of object: they can independently gather information for themselves. 
Once the shredder or printer has started, the user is then free to attend to other things. 

Another researcher who feels that basic OO has to be broadened by the addition of asynchronism 
is de Champeaux at Hewlett-Packard. He is looking at the use of a trigger-based model for inter-
object  communication.  Here  is  a  quote  from  an  article  about  OO  research  directions  [that 
appeared] in the Communications of the ACM: "This model [where the sender is suspended until 
the receiver  sends  the  result  back]  is  not  rich  enough to describe  all  the  causal  connections 
between objects an analyst needs to model." (Wirfs-Brock and Johnson 1990) Interestingly, de 
Champeaux's work suggests that a richer interaction model than (data-less) triggers is necessary. 
One  of  the  forms  he  is  looking  at  is  "send-no-wait"  (where  data  and  the  trigger  are 
simultaneously transmitted). One of the chapters in a recent book (Kim and Lochovsky 1989), is 
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called "Concurrent Object-Oriented Programming Languages", written by C. Tomlinson and M. 
Scheevel, and provides an excellent survey of this new thinking about ways to combine OO with 
concurrency. Again, Brad Cox, who is the inventor of Objective-C and one of the acknowledged 
gurus of OO, has come to feel that OO alone is not adequate for building large systems. He came 
to the conclusion that FBP concepts should be implemented on top of Objective-C, and then 
could  be  used  as  building  blocks  for  applications.  Using  a  hardware  analogy,  he  refers  to 
Objective-C  as  "gate-level",  and  FBP  as  "chip-level".  He  had  in  fact  already  started 
experimenting with processes and data flows independently when he found out about our work 
and contacted me.  He has advanced the idea that  the time is  ripe for a  "Software Industrial 
Revolution", much like the previous Industrial Revolution which has so totally transformed the 
world we live in over the past couple of centuries. Like Brad, I believe many of the tools for this 
revolution are already in place, but many writers have remarked on the enormous inertia of the 
software industry - this has always struck me as ironic, given the incredible rate of change in the 
rest of the computer industry. 

Let us try to show with an example some other differences between synchronous OO and FBP. It 
is  quite hard to find an example which lets  one compare the two technologies fairly,  as the 
synchronous orientation of most OO work means that their examples tend to be synchronous as 
well.  However,  given that  batch programs are not going to go away (in fact,  there are good 
theoretical  reasons  why they  never  will),  I  will  use  as  an  example  Brad  Cox's  example  of 
calculating the total weight of a collection of objects in a container: say, pens and pencils in a 
pencil holder. While being totally procedural, it is an example of the "small batch" logic which is 
also handled very well by FBP. 

The basic design mechanism in this kind of procedure is the collaboration diagram, of which we 
gave an example above. At any point in time we will have three objects: a requester, a container 
and an object within it. The interaction is then as follows: 
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Figure 26.3

I can still remember my feeling of dismay at seeing the right-to-left, returning flows in the above 
diagram - these mark this diagram as being call logic, rather than flow logic. Every pair of lines 
represents a client-server relationship - OO people call this "delegation", but it is not delegation 
as humans practise it. Rather it is like standing over someone, and saying, "Now type this line; 
now  type  this  line".  In  fact,  client-server  relationships  make  much  more  sense  when  the 
relationship is asynchronous, allowing the client to go about his/her business while the server is 
doing its thing. Human beings don't see any point in delegating work to others unless it frees 
them  up  to  do  something  else.  This  kind  of  interaction  is  also  not  "cooperative"  as  FBP 
understands the word. In FBP all the processes are at the same level - there is no boss. In the 
above diagram, while there may well be situations where either object can drive the other, one of 
the objects still has to be the driver (as long as one stays with passive objects only). There is very 
definitely a boss, and it is the object at the far left. 

The logic for the "compute total weight" method of the Container object is a loop which steps 
through its contained items. It could be described by the following pseudocode: 
        set total weight to tare weight of self
        get first item 'a' in (attached to) self
        do as long as get is successful
                send message to 'a' to get its weight
                add result to total weight
                get next item 'a' in (attached to) self
        enddo
        return total weight

Figure 26.4
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This method needs functions to "get first" item and "get next" item within the container. These 
functions would return an item's handle, plus an indication of whether the request was successful. 
Once an object has been located, the container can send messages to it. 

Although the same general logic can step through a variety of different collection structures (you 
basically need different method subroutines for each collection type), there is a basic assumption 
in the above logic, namely that all the items in the collection are available at the same time. As 
we have seen in previous chapters, this is not really necessary (since only one item is handled at a 
time),  and may not even be possible.  In addition, our experience with FBP tells us that  this 
function should really be designed as a reusable component which is usable as is, in object code 
form,  without  needing  any modification  or  recompiling.  Most  programming  systems  tend to 
present their ideas from the standpoint of someone writing new code, whereas FBP experience 
tells us that people don't want to write new code if they can get something off the shelf which 
does the desired job. Key to this (and also to being able to distribute such systems, now or later) 
is the requirement to avoid calls - as we pointed out above, the subroutine call mechanism forces 
tight coupling, whereas we want the data being generated by a procedure to go onwards, not 
back. The only way I know of to achieve all these goals is to design the function as a stand-alone 
function which uses ports to communicate with its neighbours. This results in a component with 
the following shape (you will recognize this as a "reference" type of component): 

Figure 26.5

This component accepts a stream or multiple substreams of IPs and generates one IP containing 
the total weight (or one per substream). Since the container has weight (its tare weight), let's 
provide it as the first IP of the (sub)stream. This diagram is really a fragment of an enhanced 
collaboration  diagram connecting multiple  processes  with one-way flows instead of  a  single 
process talking to itself with two-way flows! 

The logic of the above process can be represented by the following pseudocode (which should be 
familiar from earlier chapters): 
        create IP to contain total weight
        receive from port IN using handle 'a'
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        set total weight (in weight IP) to (tare) weight of 'a'
        send a to port OUT if connected
                else drop 'a'
        receive from port IN using handle 'a'
        do as long as receive is successful
                add 'a's weight to total weight
                send a to port OUT if connected
                        else drop 'a'
                receive from port IN using handle 'a'
        enddo
        send weight IP to WEIGHT port

Figure 26.6

Not surprisingly, it has the same general structure as the method pseudocode shown above, but 
there are certain key differences. The logic shown above can process any data stream for which 
"a's weight" is defined for each IP in the stream. Incoming IPs are passed on to OUT (if it is 
connected), and the weight goes in an IP of its own to the port called WEIGHT. Remember 
Gelernter and Carriero's remark that "processes in a parallel  program usually don't  care what 
happens to their data." Since "receive" and "send" can be suspended until data or queue slots, 
respectively, are available, this routine works even though not all IPs are in storage at the same 
time. We now have a portable component which can compute the total weight of any stream of 
IPs for which "weight" is defined. 

In addition, in OO, this function has to be a method contained in any collection class for which 
you might need to perform this function, whereas in FBP, once this function has been built, we 
can use it (just by referencing it in a network) on any data stream which conforms to certain 
conventions, without having to modify the definitions of any of the classes involved. As we said 
above,  "a's  weight"  has  to  be  defined  for  each  IP  in  the  stream.  However,  we  can  even 
parametrize the attribute name, so we can use the same object code to get a "total x" from all data 
streams for which "x" is defined. Instead of having a myriad small, special purpose, methods for 
every different  class  in  the system,  we arrive  at  robust,  flexible,  functions which are highly 
portable, e.g. (in this case) a function to determine the "total x" for any x which is defined for the 
IPs in the stream. In fact, we could even generalize this function still more: you could use a very 
similar structure to get the maximum or minimum weight of all the contained items. Of course, in 
this case "tare weight" would not be too relevant, but whether we are adding the contained item 
weights  together  or  taking  their  maximum  could  also  be  provided  as  a  parameter  to  our 
component. 

To recast this function in OO terms, we would need to provide some kind of configurability. 
Assuming that we follow OO and make the "send" and "receive" functions "messages" to objects, 
then the objects "send" and "receive" talk to could actually belong to any of the following object 
types: other processes, streams, connections or ports. The only one of these which would not 
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reduce the component's portability would be ports, unless the names of the other objects were 
passed  in as  parameters  to  the  process.  However,  the  latter  alternative  would  clutter  up the 
component's parameters with connection information. Port names would be the way a process 
identifies its "own" ports, and could be instantiated by a function very like THREADS's "define 
ports" service (see Appendix), which would accept port names and return an object handle. The 
"compute total weight" process logic can then send messages to its  ports,  to do receiving or 
sending, using normal OO syntax. We will of course need some kind of Driver or "connection" 
engine to connect our processes together using these ports together with a list of connections, to 
give us our desired configurable modularity, but this is outside the component logic. 

The last thing we need to decide before we can recast our component in OO terms is how to 
determine the "x" of a given IP. There is no problem conceptually with making this a normal OO 
"message", as "get first" and "get next" will have returned a handle to an IP, which we can then 
send messages to. However, how should we name the function of obtaining "x" for the subject 
IP? Based on FBP experience, I suggest that the simplest technique is to have a generic "get" and 
"set" function which accepts the field name as a parameter (or even multiple  field names to 
reduce the  overhead).  OO purists  may feel  that  it  is  better  to  have  multiple  "get"  and "set" 
methods - one of each per field - but this leads to a very large number of almost identical method 
subroutines. 

Whether we implement attributes as OO methods or by using subroutines hung off the descriptor, 
we can do other things than just retrieve real data. We could also use these techniques to make 
sure related field values are kept in step (data integrity),  or to support "virtual fields" (fields 
which are computed as they are needed). Thus a request for the number of children of Joe could 
scan Joe's attached IPs (where Joe is a "tree" structure) and return the result. The requester need 
not know whether the field is real or virtual. Such a mechanism would let the data designer either 
go for computation speed at the expense of having to maintain duplicate data, or, on the other 
hand, go for highly consistent data at some cost in performance. Another capability is what is 
sometimes referred to by the name "daemons": this involves the ability to automatically trigger 
events when a field value changes or passes some maximum or minimum. When combined with 
asynchronism, this could be a very powerful structuring tool for building business applications. 

One important topic I want to address is the issue of granularity. All discussions of both OO and 
FBP eventually come up against this topic: how "big" should FBP processes and OO classes be? 
The lower end of FBP granularity is determined by the fact that IPs normally have multiple fields 
and often represent objects in the outside world. You could chop a business IP up into one IP per 
field, but then you would have to pay a lot of overhead to recombine it to write it on a file, data 
base, screen or report. The granularity of a language like C++ is approximately the same as that 
of FBP: objects very often correspond to file records. Many Smalltalk objects are at this level, 
but Smalltalk also makes much smaller pieces of data objects, such as amounts of money. Even 
integers  are  treated as  objects,  although the implementation for  these  is  a  little  different  for 
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performance reasons. Smalltalk is able to be much more granular than FBP, but only because of 
its synchronous nature - "attribute objects" stay together because there is no tendency for them to 
drift apart in time. I believe the granularity of asynchronous systems will naturally tend to be 
coarser, unless counteracted by expensive (re)synchronization mechanisms. 

As I talked to people about OO, however, I came to realize that there is one area which OO 
(Smalltalk anyway) does address which is absolutely unique to it,  and in fact takes care of a 
problem which has been worrying me for several years: the need to be able to prevent illegal 
operations on data fields, e.g. to stop currency values from being multiplied together, or dates 
from being added (this was referred to as a problem above). However, this ability can only be 
taken advantage of if one does everything in OO, rather than combining it with existing HLL 
facilities. As we said before, the vast majority of HLLs are based on mathematical ideas of data, 
and treat numeric fields as dimensionless. They thus cannot provide intelligent handling of most 
of  the  numeric  values  one  runs  into  in  business  applications  -  these  are  either  dimensioned 
numeric quantities (like money or weight) or aren't even in the pure numeric domain (e.g. dates). 
In  HLLs,  all  these  types  of  data  are  compressed  into  a  single  numeric  format  which  is 
indistinguishable  from other  numeric  values.  In Smalltalk all  accesses to data values are via 
methods, so we are not forced to throw away our knowledge about what fields really represent. A 
"multiply" operation can be resolved to one or more methods which know how (or whether) to do 
the appropriate operation on the fields involved. Hybrid approaches lack this power, and any 
attempt  to  combine  OO with  conventional  HLLs  in  the  same process  vitiates  this  checking 
ability.  Some of the newer HLLs provide similar  forms of checking,  e.g.  Ada, so a possible 
solution is to restrict the "business logic" parts of an application to using an OO language or one 
of these newer compilers. 

If all of the above seems unduly negative, it is mainly that I feel a need to put OO into a proper 
perspective. OO is a simple technique, whose main importance is that it has started a sea-change 
in the way programmers think. It is definitely a step on the way, but my 20 years of experience 
with FBP tell me that, if we stop at this point, eventually frustration on the part of programmers 
is going to win out over the initial excitement. While I recognize that learning and using OO is an 
important learning experience, it is a hard way to learn, and, in its present form, an expensive 
way  as  well,  as  without  configurable  modularity  the  result  will  only  be  marginally  more 
maintainable code. Configurable modularity can be added to OO, as can multithreading, just as 
they can be to conventional programming, and it is exactly the combination of these which starts 
to open up interesting possibilities. 

In an FBP environment, it is possible and, I believe, highly desirable to mix processes running 
different languages, some OO and some non-OO. For instance, one process might be running a 
pure OO language, another one COBOL, another Assembler, and so on. Such a mixture would 
require that IP layouts become a public interface between processes, but note that this public 
interface should preferably be IPs associated with their descriptions. We now have a natural role 
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for IP descriptors: to allow us to retain the IP attributes' domain information, which could be 
exploited by OO, across processes which do not use this information (e.g. ones written in existing 
HLLs). OO processes could in fact be protected by interface processes which turn IPs into some 
format acceptable to the OO language chosen. Such a combination of processes could even be 
packaged as a composite component, giving what seems to me to be the best of all worlds! 

Wayne Stevens suggested a few years ago that objects might split very naturally into "process-
like" and "data-like" objects, where, essentially, process-like objects would correspond to FBP 
processes, and data-like objects to IPs. In the phrasing I used above, data-like objects are passive, 
while  process-like  objects  are  active.  Process-like  (active)  objects  are  able  to  act  without 
necessarily  always  having  to  be  triggered  by  an  event  external  to  them.  In  traditional  OO 
systems,  all  objects  are  passive,  and the  whole  assemblage  is  triggered  by  one  (non-object) 
trigger that starts the whole thing running. This approach is obviously going to suffer from the 
same difficulties  as  traditional  hierarchic  non-FBP programs.  If,  instead,  some of  the  set  of 
objects can be active, we can start to capitalize on our experience with FBP. You will also notice 
that FBP processes have their own internal working storage, which looks very much like an OO 
object's "instance variables". Having process (active) objects and data (passive) objects looks like 
a very good way to combine the strengths of these two complementary technologies. In fact, with 
the appropriate infrastructure, different objects can be coded in different languages. Since, as we 
have shown above,  one  of  the  basic  reuse  mechanisms in  FBP is  the  external  definition  of 
connections, we could also add a "driver" and "network" object: this would be an active object 
using the network definition as reference data. 

My belief in the potential for combining the strengths of these two approaches is bolstered by the 
fact that, in FBP, we have actually built processes which behaved much like objects, and also by 
the observation that traditional OO applications often have objects that should really be separate 
processes. An example of the former is the List Manager which I described in Chapter 21. This 
component managed multiple lists arranged in levels. An example of the converse is a Data Base 
Manager object, which accepts requests to get, insert or delete data. As we have seen in earlier 
chapters,  this  is  better  implemented  as  an  asynchronous  process,  rather  than  driven 
synchronously by other objects. Our List Manager suffered from the problem that it was very 
sensitive to the exact sequence of requests, which made it hard to use in a highly asynchronous 
environment. It would have been better implemented by externalizing the lists as FBP trees, so 
that one or more processes could work on these trees asynchronously. In other words, objects 
with overly complex internal data will be hard to use when we start to have more processes 
running in parallel. I expect this will apply even more noticeably as we start to distribute logic 
across multiple processors. 

A number of writers in the OO field have started to explore the possibilities of active objects. In 
Chapter 1 of a collection of essays compiled by Kim and Lochovsky (1989), O. Nierstrasz makes 
the point that systems which mix active and passive objects would not be uniform, and this seems 
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a valid point. However, one possible solution is offered by a system called Emerald (Black et al. 
1986), which was designed for implementing highly distributed systems, and which maintains 
uniformity across all its objects by allowing every object to have a single process in addition to 
methods. Not all objects may activate their processes, but the potential exists for them to do so. 
This suggests a very workable generic structure for all the objects in a combined FBP/OO hybrid. 

OO research and development seems to have entered a stage of accelerated growth, and it is very 
exciting to me that some of the newer work bears an uncanny resemblance to FBP! A dichotomy 
seems to be developing between the synchronous and asynchronous OO approaches, just like the 
one  we have  seen  in  non-OO.  A number  of  OO researchers  believe  it  is  the  asynchronous 
approaches which will turn out to have the most to contribute to the programming art in the long 
run. More and more of these people are discovering the power of active processes to broaden OO 
and make it better match the real world. Tsichritzis et al. (1987) have used the concept of active 
objects in knowledge processing - they call their objects KNOs (KNowledge Objects). KNOs can 
also have a complex structure, analogously to FBP composite components. Still more recently, 
Nierstrasz, Gibbs and Tsichritzis have collaborated on another paper on Component-Oriented 
Software Development (1992) which approaches FBP even more closely, but is still based solidly 
on traditional OO concepts. While their terminology is different from that of FBP, many close 
correspondences between the two can be established. They use the term "script" to mean "a set of 
software components with compatible input and output ports connected". While scripts can be 
data  flow or  object-oriented,  the  data  flow version  corresponds  closely  with  FBP networks. 
"Scripting" means the construction of scripts, so the term "visual scripting" is defined as "the 
interactive construction of applications from prepackaged, plug-compatible software components 
by  direct  manipulation  and  graphical  editing".  In  their  article  they  talk  about  reusable 
components, ports, SACs (scripts as components) and visual scripting - all ideas that have direct 
counterparts in FBP. The same article goes on to describe an application of these concepts to 
multimedia called the "visual museum". "Media objects" (which are active objects, i.e. processes) 
work on "media values", which are 

"...temporal  sequences....  Media  objects  produce,  consume  and  transform  media 
values.... Media objects, in turn, are grouped into multimedia objects by specifying 
the flow of values from one object to another - we call this flow composition.... flow 
composition actually produces applications...".

Another remark in the same paper that I found interesting was, 

"One benefit of flow-based composition is that new functionality can be added, or 
removed, by simple modifications to the script".

In the conclusion of their article they stress a number of the points I have made elsewhere in this 
book: the difficulty of generalizing to create good reusable components, and the economic and 
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project  planning  impediments  to  producing  such  components.  This  equation  of  objects  = 
processes seems to be gaining acceptance: the article describing A'UM (Yoshida and Chikayama 
1988) matter-of-factly describes the system as consisting of "streams" and "objects" (for more on 
this interesting system see the next chapter). They then go on to say that of course streams can be 
objects also - which seems very close to what we were saying earlier about the possibility of 
treating IPs as objects. 

From an FBP point of view, the concept which I feel is missing from traditional OO (not from 
the work on active objects) is the concept of "transformer" processes (many of the media objects 
described  in  the  above-mentioned  paper  are  explicit  transformers).  As  Nan  Shu  (1985)  has 
pointed out, much of business programming has to do with transforming data from one format to 
another. The paradigm of passing a stream of data packets through a transforming process seems 
to fit very naturally with this image, but this does not seem to fit well with traditional OO. Since 
the traditional OO paradigm specifies that only the methods of a class should know an object's 
internal state (which is presumably held in some canonical form), this would seem to imply that 
transformations are only of interest at the boundaries of an application (when one is bringing in 
or  outputting "foreign" files,  reports  or  screen data).  In  practice,  as businesses  build  bridges 
between more and more of their applications, we will spend quite a lot of time converting data 
between different formats. Some of these applications will be vendor-provided, so the users will 
have even less control over their data formats. If these applications are OO, how will their classes 
be merged with the corresponding classes of the users? Data conversions will also be required for 
many of the common data transportation techniques - this will become more and more important 
as we move towards distributed systems.  Thus, you might decide to convert binary data into 
character  format  to  simplify  transportation  between  PCs  and  hosts.  Descriptor-driven 
transformers in an FBP environment will provide a simpler paradigm and will help to make all 
this run smoothly. Interestingly, in the paper I was talking about above, the authors also feel that 
multi-media  applications  will  require  a  wide  range  of  transformations  of  media  values  into 
different forms, depending on the various uses they need to be put to. 

I  found  it  significant  that  many  of  the  media  objects  in  the  paper  on  Component-Oriented 
Software Development have names which are verbs, rather than nouns, e.g. render, interpret, 
provide  (in  FBP,  processes  are  usually  verbs,  while  IPs  are  nouns,  e.g.  customer,  account, 
department).  Traditional  OO  essentially  works  with  nouns,  with  the  verbs  relegated  to  the 
methods - this has the effect that, for instance, to record the fact that a student has taken a course, 
you express this by having the student send messages to the course, or the course to the student. 
From an FBP viewpoint, it seems more natural to handle this with a process which transforms the 
student  in  well-defined ways.  So an OO approach which  is  perhaps closer  to  FBP's  way of 
thinking would be to send both student and course to a separate "attacher" object, which has the 
ability to associate students and courses. This object would be an active version of the general 
category of object  called "dictionaries" in Smalltalk.  These are two different,  not necessarily 
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incompatible, viewpoints. 

It seems quite probable that powerful hybrid FBP/OO systems will be built within the next few 
years [still waiting! JPM]. Such a combination may well have some interesting and unexpected 
capabilities. Unfortunately, one problem the OO part of it is almost certain to have (until the new 
highly parallel hardwares appear on the market) is that of performance: for every field in every 
information packet accessed by an OO method, you need a call, plus logic to locate the method. 
In FBP, you can totally hide the layout of your IPs, and you can control your performance - 
accessing a field may be as little as one instruction, or it may be a complex function: it is your 
choice. Incidentally, the performance issue makes it doubly important to be able to select which 
part of an application is to be written in an OO language, and which in a conventional language. 

The  performance  problem  and  the  many  arguments  in  favour  of  the  asynchronous  process 
approach to applications design lead me to believe that,  if OO starts to be used for business 
production programming, it will be the concept of active objects (process objects) which will turn 
out to be more productive for OO than the original indirect call mechanism. To me active objects 
seem to be a natural evolution of OO in a direction which will eventually converge with FBP. If 
one can say that conventional OO (static objects) provide autonomy of data and autonomy of 
logic, then active objects also provide autonomy of control. Without the last, I believe it is not 
possible to build the systems we need in the future. 

After I wrote the above, I came across the following comment by C. Ellis and S. Gibbs in Kim 
and Lochovsky (1989): 

"In the future, as we move beyond object-oriented programming, it is likely that one 
of the useful enduring concepts is that of 'active objects'."

I  agree  absolutely!  Over  the  next  few years  I  believe  that  we will  see  more  and more  OO 
proponents talking about the advantages of active objects. I applaud this as it will expose FBP to 
a wider audience, but it may leave the programming public with the erroneous impression that 
FBP is a rather complex extension of the basic OO set of concepts. In reality, as I have shown in 
the foregoing pages, FBP can in fact be implemented with quite simple software and yet yield 
great gains in productivity, while OO can only do this if it incorporates advanced concepts which 
seem to be converging with FBP. To quote Ellis and Gibbs again on this matter: 

"Although we foresee  that  object-oriented programming,  as  we know it  today,  is 
close  to  its  deathbed,  we foresee  tremendous  possibilities  in  the  future  of  active  
object systems [my italics].... Vive l'objet actif."

The celebration may perhaps be premature, but, if you have read this far, you will have some idea 
why so many of us feel so excited about these concepts! 

Before leaving this topic, I would like to make a last point which I consider vitally important: any 
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evaluation of a programming technology must be done in the context of building and maintaining 
real  business  applications.  There  are  only  three  reasons  I  am aware  of  for  adopting  a  new 
technology: performance, productivity and maintainability. Even if a new technology allows us 
to  get  applications  working  faster  or  sooner,  if  it  does  not  result  in  significant  gains  in 
maintainability, it may not be worth the effort. As I said earlier, we have to try out potential tools 
on the day-to-day concerns of business programmers, rather than on artificial, theoretical puzzles, 
no matter how intellectually stimulating they may be! When we have an OO application which 
processes every one of over 5,000,000 accounts 5 days a week at a bank, is easy to maintain and 
does not use prohibitive amounts of resources, we will truly be able to say that OO has come of 
age! 
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[This is a survey of the stage the “related” work was at up until 1994.  Of course, many other 
systems have appeared since then, and indeed there are now companies expressly founded to  
capitalize on these concepts and similar ones.  Some of the systems described in this chapter are  
still alive and doing well – but maybe this chapter is chiefly of interest as a historical record.]

This chapter provides an overview of some of the work going on in universities and business 
which has concepts in common with FBP. My main problem with trying to give a good overview 
is  that  new software  is  appearing faster  than I  can  keep pace  with  it!  Every  time I  open a 
magazine I see work that has resonances with FBP, which I therefore resolve to read. Then I have 
to follow up their bibliography, which results in more to read, and so on! 

The above is a roundabout way of apologizing to all those researchers and developers out there: 
if I have omitted your favourite piece of software or research effort from what follows, please 
accept this apology and send me information about it for my ever-growing files! 

In a similar vein, I will summarize what I perceive as the salient features of each item, and I may 
have misunderstood their thrust. In most cases I have had no contact with the authors, and I will 
inevitably tend to look at their work through FBP-coloured glasses. Again, please contact me to 
exchange ideas or to throw brickbats! 

For the above reasons, what follows is probably only a fraction of what is out there - I just hope I 
have included enough to pique your interest. 

FBP seems to me to stand on three main "legs": 

1. asynchronous processes 

2. data packets (IPs) with a lifetime of their own 

3. external definition of connections 

You will find one or two of these in many systems, but it is the combination of all three which 
makes FBP unique. And even when you find all three of these items present in a system, you will 
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find that they have been used to address a particular area or problem, such as distributed systems. 
I believe many of their developers have not yet understood the potential of this combination for 
improving all application development. 

The first system listed below is not even an application development system, but a simulation 
system. In the preceding chapters we have often remarked that FBP allows simulations to be 
"grown" into full-scale applications, and the developers of GPSS saw this as a very intriguing 
possibility. 

GPSS (General Purpose Simulation System) 
This is a simulation system developed by Geoffrey Gordon and his team at IBM in the early 60s. 
I am including it because it shares all three characteristics above (the data packets were called 
"transactions"), and it was a very successful system for simulations. I also include it because it 
profoundly influenced my thinking about how to do application development. Gordon had hopes 
of extending it to run as an operating system control program, and did quite a bit of work in this 
area.  Many  people  have  also  dreamed  that  it  should  eventually  be  possible  to  "grow"  an 
application from its simulation, and in fact this was tried out in 1963 (30 years ago!) using GPSS, 
and was quite successful. Using FBP this process is now very straight-forward. 

MASCOT  (A  Modular  Approach  to  Software  Construction,  Operation  and  Test)  (K. 
Jackson and H. Simpson 1975) 
This system, built by Ken Jackson and his team at the Royal Radar Establishment in England, 
shares all three of the above characteristics also. I believe it has become quite widely used within 
the  military  establishment  in  England.  Jackson's  motivations  for  developing  MASCOT were 
similar to ours, plus a desire to make interrupt-driven software resemble the remainder of the 
computer  load,  as  a  lot  of  their  signals  work  involves  handling  asynchronous  interrupts.  In 
MASCOT an IP is called a "message", as in much of the work listed below, and a connection a 
"channel". The basic MASCOT unit of software is a subnet, called a "subsystem", and is drawn 
graphically, and then converted into a textual representation. MASCOT's services are somewhat 
lower level than FBP's, but its channel management is very similar overall. Here's a quote on 
how well the developers feel they met their objectives: 

" ... the overall philosophy of MASCOT operation ... is to process data when it is 
available, to explicitly wait when no data is available and to pass on a stimulus to 
adjacent data users when data of interest is passed on.... Further, the use of the control 
queue  within  the  interrupt  handling  software  enables  the  expression  of  interrupt 
handling software to be unusually straightforward. The elimination of polling and 
searching  within  the  kernel  is  complete...  

"Conclusion  
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"MASCOT provides a very basic yet sound machine-independent kernel to produce a 
suitable environment for real-time programming.... Finally MASCOT looks to be a 
promising base upon which to build the high integrity systems which are the subject 
of current research."

You'll note the term "message": this reflects the idea that processes send messages to each other. 
Some of FBP's IPs are definitely messages, but our experience is that the use of messages as the 
main communication vehicle implies a finer process granularity than the level we have found to 
be most productive. 

CHIEF 

This seems a classic case of parallel development, as this work must have been going on at about 
the same time as ours was going on in Canada, but was totally independent of it. J. Boukens and 
F. Deckers, working for the Shell Company in Holland, came up with a system which shows a 
number  of  really  remarkable  similarities  to  FBP.  In  fact,  the  main  difference  is  that  their 
diagrams  are  vertical,  whereas  FBP's  are  horizontal!  Another  difference  is  that  they  allow 
multiple consumers for a connection (causing the records to be automatically copied), while in 
FBP  we  do  not  allow  this.  On  the  other  hand,  FBP  dialects  usually  have  an  off-the-shelf 
Replicate component, which has the same effect. CHIEF's ports are numbered, as in AMPS and 
DFDM. To convert one of their diagrams into machinable text, they list the connections (called 
buffers),  naming  their  producers  and  consumers.  A  list  of  such  specifications  is  called  a 
"cooperation". To program individual processes they developed their own interpretive language, 
whose execution was integrated with the multithreading driver.  There is also a discussion of 
deadlocks. 

When  reading  their  paper,  and  especially  the  discussion  after  their  presentation,  I  felt  very 
strongly their excitement over these concepts, and perhaps some frustration that others weren't 
feeling this excitement too... 

Actually, speaking of parallel evolution, after I had been working on these concepts for a few 
years, I came across two papers dating back quite a few years: one was written in 1967 (32 years 
ago!)  by  two people  at  the  Rome Air  Development  Center,  E.  Morenoff  and J.B.  McLean, 
entitled  "Inter-program Communications, Program String Structures and Buffer Files" (1967), 
describing a program interconnect structure based on the control of data flow via intermediate 
queues. For a single processor, queues could be maintained in main memory. For a distributed 
processor structure, queues could be held on disk. 

A few years later (1971) R.B. Balzer published a paper on what he called  PORTS, describing 
work done at RAND where modules could be shielded from other modules by utilizing software 
commands such as "connect", "disconnect", "send" and "receive". It is interesting that this paper 
is one of the most cited papers in the field, but, according to private communications with the 
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author, little came of it. 

STREMA 

Another related system I came across in my reading was developed by Ian Clark of IBM UK 
(1976).  It  is  described  as  a  graphic  conversational  language  for  specifying  and  running 
application processes. STREMA uses a relational model and is intended to allow relational data 
to be treated in a uniform manner with flat files and subroutines. In STREMA, all these are made 
available to the programmer as "streams", which resemble most closely the processes of FBP. 
You can specify graphically how "streams" are connected, and what happens to the fields in the 
records  travelling  through them -  Clark uses  the term "component"  to  describe what  a  field 
resides in as it is in transit through a given stream (not to be confused with FBP "components"). 
Streams drive each other, are described by a "relator", and may be subject to constraints on their 
components. Components (fields) have values, but they also have status: one of UNDEFINED, 
VALID or INVALID (similar to DFDM's dynamic attributes). As a record enters a stream, what 
happens  is  determined  by  the  stream's  "relator",  and  the  constraints  on,  and  status  of,  the 
incoming components. Constraints may be such things as bounds on a value, type specifications, 
or forcing a value not to repeat nor descend in a run. This concept can support processes as 
diverse as applying subroutines to streams, collating data streams, or getting data from or writing 
data to a relational table. Combining the concepts of relators and constraints simplifies a lot of 
the logic conventional programs have to do validating fields and deciding what to do if things go 
wrong.  Clark  has  done a  good job of  combining  a  number of  useful  concepts  into  a  single 
framework. Again, there are similarities with FBP, even though his thrust was slightly different. 

LGDF 

R.G.  Babb  II  (1984)  uses  the  term  "large-grain  data  flow"  (LGDF)  to  describe  a  level  of 
granularity like FBP's, which he describes as a compromise between fine-grained data flow and 
traditional approaches. He points out that, under LGDF, the lowest level programs can be written 
in almost any language (he uses Fortran). He also starts the design process by showing data flow 
dependencies in diagram form and then converting them to what he calls a "wirelist". Here's a 
quote: 

"We  have  come  to  some  unexpected  conclusions...  The  most  surprising  is  that 
sequential programs are often easier to design and implement reliably when based on 
a parallel (asynchronous) model of computation."

In  case  you  start  getting  confused  as  you  read  this  chapter:  please  take  note  that  the  term 
"message" used above is not the same as the Smalltalk "message", which is basically a linearized 
subroutine call, comprising a selector (which indirectly specifies the code to be executed) and the 
parameters to be passed to it. The more common use of "message" is similar to its meaning in 
colloquial  English:  a  short  piece  of  text  carrying  instructions  and/or  information  from  one 
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process to another. 

NIL 

This  system,  developed  by Rob Strom and his  team (1983)  at  the  IBM Research  Center  at 
Yorktown Heights, has some very strong similarities to FBP, except that it is a programming 
language, rather than a coordination language. The original motivation for NIL seems to have 
been for programming communication software - you will perhaps have noticed that the multiple 
layers of communications software can be implemented as pairs of complementary processes. 
They  also  wanted  good  inter-process  protection,  which,  as  we  have  seen  above,  means 
minimizing  side-effects.  Like  FBP,  NIL  also  allows  applications  to  be  built  up  out  of 
communicating sequential processes; only one process can own a data object at a time; "send" is 
"destructive" (the sent object can no longer be accessed by the sender); and so on. Strom makes 
the point that the ability to have processes on the same machine run in a single address space 
makes the cost of a message exchange very low, comparable to the cost of a subroutine call, and 
also makes it possible to have larger numbers of smaller-grained processes. 

While it does not have an explicit coordination language, NIL is so powerful that this kind of 
language can easily be added - a parent process has enough facilities available that it could build 
a running program based on a file which specifies the connections between processes. NIL was 
deliberately designed to allow dynamic modification of networks, where processes can be created 
dynamically, and also ports of the created process can be dynamically connected to ports of other 
processes, both at process creation time and during subsequent execution of the process. The way 
it does this is by making ports objects, so that the process of connecting ports happens at run-
time, under control of what are called "capabilities". 

Just as in FBP, the only way processes can affect each other is via the communication channels. 
Strom and Yemini (in a recent paper on NIL) point out that this fact, plus an extension to strong 
typing in the NIL language called "typestate checking", provides a high degree of security. Since 
NIL has  its  own compiler,  it  can  enforce  typestate  checking,  and thus eliminate  the  risk of 
moving data to an address defined by an uninitialized pointer. DFDM, on the other hand, was 
explicitly designed to interface with existing languages: S/370 Assembler, PL/I and COBOL, and 
THREADS  is  C-based,  so  this  risk  is  present  with  these  implementations,  but  it  can  be 
minimized by good programming techniques and inspections. DFDM and THREADS also adopt 
the strategy of invalidating a pointer to an IP after that IP has been disposed of - this ensures that 
an erroneous attempt to access that IP afterwards will cause an immediate crash. Like the NIL 
group,  we  also  found  that  this  kind  of  environment  provides  very  good  isolation  between 
processes. I believe there were very few cases where one process damaged another one's code or 
data. 

Strom's  group  has  since  developed  a  follow-on  to  NIL,  called  Hermes (Strom et  al.  1991) 
because Hermes was the "process-server  of the gods"!  They are currently building a  "global 
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desktop" which will allow applications to be developed graphically. This is reminiscent of the 
work we did generating running programs from diagrams, alluded to in Chapter 2, but the global 
desktop will also allow programs to be connected up and reconfigured while they are actually 
running.  It  is  designed  to  be  used  by  people  who may  or  may  not  be  knwledgeable  about 
programming. Strom's team has also been doing interesting work on what they call "Optimistic 
Recovery" - recovery strategies based on the idea that failures are rarer than successes, so one 
should go ahead with logic on the assumption that things will work and only undo it if there is a 
failure. Their infrastructure keeps the required information so programmers really don't have to 
think about recovery. 

In the previous chapter I mentioned Rob Strom's remark about his team's decision to think of 
themselves as part of the OO world. In that chapter I also alluded to FBP-like work coming out 
of the OO fraternity, such as the media objects of Nierstrasz et al. (1992). 

Parallel Logic Programming 

There is an ever-growing series of parallel logic programming systems like Parlog, Vulcan, and a 
number  of  projects  proceeding  under  the  aegis  of  ICOT  in  Japan.  PROLOG  itself  can  be 
combined with FBP to give some very interesting capabilities, so it is not surprising that some of 
these projects are starting to look a lot like FBP: for example, I find A'UM by K. Yoshida and T. 
Chikayama (1988) very interesting. Incidentally this article has an excellent bibliography. The 
subtitle  of  this  article  is  itself  quite  evocative:  A  Stream-Based  Concurrent  Object-Oriented 
Language - all the good words in a single title! 

This same article started me thinking again about "streams". In A'UM and some of the other 
systems related to it, a distinction is made between "streams" and "channels". If I understand it 
right, in A'UM, a "stream" runs from one source to one destination, whereas a "channel" may 
contain more than one stream, coming from different sources: the items in each stream must stay 
in sequence relative to each other, but the streams in a channel are not constrained relative to 
each  other.  In  A'UM only one reader  is  allowed for  a  channel,  while  in  Tribble's  paper  on 
channels (Tribble et al. 1987), he allows multiple readers for a channel. The authors of A'UM 
feel that not allowing multiple readers makes their semantics sounder and the implementation 
simpler. Our experience tends to support this view. 

In FBP we define a stream as the set of data IPs passing across one connection, but we also allow 
multiple sources (but only one destination). It may well be that the distinction between stream 
and channel is more rigorous than the FBP concept, and I look forward to seeing how these 
concepts evolve. We also pragmatically allow a stream which is accepted by one process to be 
passed on to the next, e.g. a stream of detail records might flow from a Reader, through an Edit, 
and on to a Process component. Some writers might prefer to call these multiple streams which 
just happen to contain the same data. I admit in hindsight that our concept of streams is a little 
fuzzy at the edges, but I feel it has never caused confusion in practice, and has been implemented 
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in all of the FBP dialects. Multiple destinations, on the other hand, have never been implemented 
in any of our implementations, partly because it is not clear whether the data should be replicated 
or should be assigned randomly to the receivers, like Linda's piranhas (see below) - in any case, 
both solutions can be realized very easily by means of generalized components. 

Hewitt's  Actors take  processes  down to the finest  possible  granularity:  "Hewitt  declared",  to 
quote Robin Milner (1993), "that a value, an operator on values, and a process should all be the 
same kind of thing: an actor." This approach has considerable theoretical attractiveness, but in 
my view, to be practical, it basically has to be implemented as hardware, rather than software. 
There are also of course a number of projects growing out of Hewitt's Actors, which also seem to 
be on a converging path with all the other work (albeit at the more granular end of the scale), e.g. 
Agha's COOP (1990). 

BSP 

In Chapter 1, I said I would describe L.G. Valiant's work (1990) in a little more detail, so this is 
as good a time as any! BSP stands for "bulk-synchronous parallel", and it is of considerable 
interest because the author proposes it as a new "bridging model", to replace the current, von 
Neumann  bridging  model.  He  stresses  that  he  is  proposing  it  neither  as  a  hardware  nor  a 
programming model, but to "insulate software and hardware development from each other, and 
make possible both general purpose machines and transportable software." The BSP model is 
defined as comprising the following three attributes: 

1. A number of components,..... 

2. A router which delivers messages point to point between pairs of components, 

3. Facilities for synchronizing all or a subset of components at regular intervals of L time 
units,  where L is  the periodicity  parameter.  A computation consists  of a  sequence of 
supersteps. .... After each period of L time units, a global check is made to determine 
whether the superstep has been completed by all the components. If it has, the machine 
proceeds to the next superstep. Otherwise, the next period of L units is allocated to the 
unfinished superstep. 

Now look back at Chapter 20, and you can see that Valiant's third attribute is very similar to 
FBP's use of subnets in checkpointing, except that he checks for completion on a regular basis - 
in FBP implementations, we usually count the processes, and then wait until that number have 
terminated. Otherwise it is very similar. 

Valiant  describes  a  variety of implementations,  plus their  appropriate  performance  measures, 
such as packet switching networks, a hypercube-connected computer and optical crossbars. Here 
is  an interesting comment in his conclusion:  "...  if  the relative investment in communication 
hardware  were  suitably  increased,  machines  with  a  new level  of  programmability  would  be 
obtained."  Note  the  juxtaposition:  not  just  improved  performance,  but  improved 
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programmability. 

UNIX and its descendants 

There is another group of related approaches, based on the very popular UNIX(tm) system. In 
these systems, the connectivity seems to be less rich, but the data passing between the processes 
is more like IPs or file records than messages. UNIX supports the concept of "pipelining", where 
the output of one process becomes the input of another, and so on repeatedly. This is definitely a 
form of configurable modularity, and I found a lot of their experience using this technique relates 
closely to things we discovered using FBP. 

You will find the word "pipe" used quite often for what we call "connection" in FBP. In UNIX 
the '|' operator represents what it calls a "pipe". Processes can be assembled into working systems 
by connecting them together using this operator. For instance, suppose a user enters: 
ls | pr -2 | lpr

The effect is for 'ls', 'pr' and 'lpr' to be assembled on the fly in such a way that the "standard 
output" of 'ls' feeds the "standard input" of 'pr', and so on. So this command means "list the files 
in the current directory; format the result 2-up and send the results to a line printer". This is very 
similar to the interpreted mode of DFDM and THREADS. UNIX's equivalents to ports are the 
file  descriptors  0  (standard  input)  and  1  (standard  output),  which  are  automatically  open 
whenever  a  process  gets  control.  What  flows  between  the  UNIX  processes  is  streams  of 
characters,  rather than structured IPs, so the metaphor is not as powerful  as FBP's,  nor does 
UNIX  pipelining  support  complex  networks.  On  the  other  hand  UNIX's  character  string 
orientation makes it a very suitable for text manipulation, and a large number of the well-known 
UNIX components address this application area. 

OS/2 Interprocess Communication 

Orfali  and  Harkey  (1991)  list  four  techniques  for  interprocess  communication  in  OS/2: 
anonymous pipes, named pipes, queues and shared memory. Anonymous pipes can be accessed 
by means  of  a  write  handle  and  a  read handle  and  are  mostly  used  by  parent  processes  to 
communicate with their descendants, while named pipes allow communication between unrelated 
processes. Named pipes are accessed using standard OS/2 file services, so code does not have to 
distinguish whether it is writing to a file or to a named pipe - this will be determined by the file 
name. 

CMS Pipelines 

This system was developed by John Hartmann of IBM Denmark for the CMS environment. It is 
also consciously modelled on UNIX, but since it is specialized for the CMS environment, it is 
record-oriented, rather than byte-oriented. It supports more complex topologies than UNIX does 
by means of a notation for ending one pipeline and starting a new one attached to a previous 

- 310 -



Chap. XXVII: Related Concepts and Systems

"stage" in the pipeline definition (using a label notation). I therefore see it as a halfway house 
between  UNIX  and  FBP  (again  developed  independently  of  FBP).  A  program  may  also 
dynamically redefine the pipeline topology by replacing itself or one of its neighbours with a 
newly defined pipeline. 

Here is an example of a CMS Pipelines pipeline: 
pipe < logged users | split , | take 5 | console

This is a CMS command to set up a pipeline which reads the file called LOGGED USERS, splits 
each record into multiple  records,  using the comma as  the delimiter,  selects  the first  5,  and 
displays them at the console. 

Pipelines  components  are  written  in  REXX,  using  a  SUBCOM  environment  for  the  "pipe" 
services. 

CSP (Communicating Sequential Processes) 
This seminal work by Tony Hoare (1978) has been the basis for a large amount of work by other 
writers.  Here,  the  external  specification  indicates  which  processes  are  running  concurrently 
(using the '||'  operator to indicate parallel execution), not how they are connected. The actual 
connectivity  is  implied  by the  send and receive commands,  which must  explicitly  name the 
process being communicated with. Connections are assumed to have zero capacity. 

As an example of the CSP coordination notation, here is Hoare's notation, given in his article, for 
what I have referred to above as the Telegram problem, as follows: 
[west::DISASSEMBLE||X::COPY||east::ASSEMBLE]

Here "west", "X" and "east" are process names, while the capitalized names stand for program 
sections (analogous to FBP components). 

The problem is that DISASSEMBLE has to know the name "X", COPY has to know the names 
"west" and "east", etc. Hoare's orientation seems to be towards 'write new', rather than reuse. He 
does mention port names as a possible solution to this problem, but doesn't stress the fundamental 
paradigm shift involved in changing from 'write new' to reuse, nor the importance of finding a 
good notation for combining black box components. 

Interestingly, he also makes the same point that Carriero and Gelernter made about a subroutine 
being a special case of a coroutine. 

You will  notice the frequent occurrence of processes,  connections and sometimes ports,  with 
different names being used from system to system. Also configurable modularity at any more 
complex level than that of UNIX requires some agreement of names (or numbers) between the 
outsides  and  insides  of  processes.  NIL  avoids  this  by  making  ports  local  to  a  process,  but 
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allowing a parent process to pass information about connections to the child process in the form 
of parameters. 

Linda 

Now let's move off  in a different  direction: Carriero and Gelernter,  whom I have mentioned 
above,  have  developed  and written  extensively about  a  very  interesting  system called  Linda 
(1989),  which has stirred up a lot of interest  in academic circles.  Instead of IPs,  Linda uses 
"tuples", ordered lists of values. "Tuples" are created in "tuple space", just as FBP IPs are created 
in space managed by FBP, not by the components. Unlike FBP's IPs, however, a tuple just floats 
in tuple space until retrieved by a process which knows its identification (or part of it). Professor 
Gelernter uses a neat analogy in a recent Scientific American article to explain his concept of a 
"tuple". Imagine two spacemen working in space building a space station: one of the workers has 
finished working with a wrench and wishes it to be available for other workers - he or she can put 
it "down" (so that it follows its own orbit in space), and the other worker can then pick it up 
whenever convenient. In the same way, tuples or FBP IPs have an independent existence and 
follow their own orbit from one worker (process) to another. 

How does the spaceman actually pick up the wrench? Here is chiefly where Linda diverges from 
FBP: in Linda, access is done by pattern matching. A process may need a tuple with value X in 
field Y - it just has to request a tuple matching those specifications, and it will eventually receive 
an  appropriate  tuple.  Receiving  a  tuple  can be  destructive  or  non-destructive  ("consume"  or 
"read"). If more than one tuple matches the specification, the system picks one at random. If there 
are  none,  the  requesting process  is  suspended.  Values  are  not  communicated  back from the 
receive to the tuple. 

One other important feature of Linda is that of "active" tuples - these are tuples which execute 
code  at  the  moment  of  creation,  and  then  turn  into  ordinary  "passive"  tuples.  You  can  do 
distributed logic such as matrix operations this way, where each tuple does a calculation when it 
is  created and then becomes a passive matrix element.  Perhaps the nearest  to this in FBP is 
something like the Subnet Manager, which takes a passive chunk of code and turns it into a 
process. 

Another Linda image which is evocative is the "school of piranhas". Here a number of processes 
lie in wait for a tuple, and when it appears in the tuple space any one of them can grab it. This is 
an effective technique of load balancing. In Chapter 22, I described a performance improvement 
technique where we had 18 occurrences of a process executing the same disk traversal logic. In 
this case, we had to provide connections from the client to the 18 servers, so we had to have a 
"load balancing" process in between - the piranha technique would do this without the need for 
the extra process. 

To summarize the essential difference between Linda and FBP, Linda is a  bus while FBP is a 
tram - Linda has more degrees of freedom but I believe is more expensive in terms of resources. 
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If  one  Linda process  generates  a  series  of  tuples  with  an  extra  field  containing  numbers  in 
ascending sequence, you could have another process request them in sequence. So Linda can 
simulate FBP. Conversely, FBP can just as easily simulate Linda's associative style of retrieval 
by having one or more processes manage an associative store. It seems to me that Linda and FBP 
are so closely related that systems of the future may combine both approaches. After all, there 
may be areas of an application where tracks are more appropriate, and others where you want 
more degrees of freedom - sort of like containers moving from rail to ship and back to rail. Here 
is a final quote from Gelernter and Carriero (1992): 

"In general we see computation and programming languages as areas in which further 
progress will be slow, incremental and, in many cases, of marginal importance to 
working  programmers.  Coordination  languages  are  a  field  of  potentially  great 
significance. A growing number of groups will play major roles in this work."

I couldn't agree more! 

RIG, Accent, Mach 

These are a series of network operating systems (Rashid 1988), each one evolving out of the 
previous one. RIG (Rochester's Intelligent Gateway) was an interprocess communication facility 
allowing processes to communicate by means of information packets. RIG allowed any process 
to access any other's  port  using a pair of integers  (process number.port  number).  While  this 
allowed port numbers to be passed around as data, it meant that port defined services could not 
easily be moved from one process to another. Also, if a process failed, this information could not 
be  signalled  back  to  processes  depending  on  it.  Processes  therefore  had  to  register  their 
dependence on other processes with a special process which was notified of process death events 
(called the "grim reaper"). This makes me wonder if systems like Linda may not suffer from the 
same problem. 

Accent evolved out of RIG, by defining ports to be capabilities as well as communication objects 
and  adding  an  integrated  virtual  memory  management  system  which  allowed  processes  to 
transmit  large objects  (RIG could  only transmit  2K bytes  at  a  time).  Here  is  a  quote  about 
Accent: 

"Experience with Accent showed that a message based network operating system, 
properly designed, can compete with more traditional operating system organizations. 
The  advantages  of  the  approach  are  system extensibility,  protection  and network 
transparency."

Mach then evolved out of Accent because of the need in their environment for complete UNIX 
compatibility,  and  "to  better  accommodate  the  kind  of  general  purpose  shared-memory 
multiprocessors  which  appear  to  be  on  their  way  to  becoming  the  successors  to  traditional 
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general purpose uniprocessor workstations and timesharing systems." Among other things, Mach 
splits the Accent concept of "process" into "task" (basic unit of resource allocation) and "thread" 
(basic unit of CPU utilization). 

Advanced Hardware Designs 

Another characteristic of the three "legs" of FBP listed above is that they could actually describe 
a  network  of  independent  processors,  all  interacting  to  do  a  job  of  work.  This  approach to 
building super-powerful machines is getting a lot of attention lately, as it is generally recognized 
that the single processor is running out of steam. Although we can probably make individual 
processors smaller and faster (after all, a bit is simply a choice between two states, for instance 
two states  of a molecule),  you start  to  run into limitations  such as the speed of light  or the 
potential damage which can be caused by a single cosmic ray! A lot of work is going on on 
linking multiple processors together to achieve enormous amounts of computing power without 
any one processor having to be incredibly fast. Suppose we put 1000 processors together, each 
running at 20 MIPS (millions of instructions per second) - this would provide 20,000,000,000 
instructions per second. Since such a machine is normally thought of as being oriented towards 
scientific calculations, so that the instructions would tend to be floating-point operations, this 
machine would be a 20 gigaflop machine. Multiply either of these factors by 50 (or one by 5 and 
one by 10), and you are into the "teraflop" per second range (1,000,000,000,000 floating point 
operations per second). 

The two main approaches here are multiprocessors and multicomputers. I am indebted to my son, 
Joseph Morrison,  for some of the following comments.  A number of writers seem to favour 
multiprocessors (with shared memory) because they do not require us to radically change our 
approach to programming. The programming technique I have described in the foregoing pages 
seems to be a good match with this approach, as it can be mapped onto a multiprocessor in a 
straightforward manner: IPs are allocated from the shared memory, and FBP processes are spread 
across the available processors to obtain parallelism. All commercial  multiprocessors provide 
concurrency  control  mechanisms  such  as  semaphores;  these  can  be  used  to  manage  the 
concurrent accesses to the IPs. Examples of this type of machine are the KSR 1, CEDAR, DASH, 
T*, Alewife - this list is from (Bell 1992). 

FBP networks also have a natural mapping to  multicomputers. Here parallelism is obtained by 
having  a  network  of  connected  processors,  each  with  its  own  memory.  The  data  must  be 
transmitted from one processor to another, as required, so communication speed and bandwidth 
become important considerations. Examples of this type of machine are the Intel Paragon, CM5, 
Mercury, nCube 2 and Teradata/NCR/AT&T systems. A number of different network topologies 
have been investigated - examples are meshes, tree structures, hypercubes, and ring structures. 

FBP could be mapped onto multicomputer systems by again evenly distributing the processes 
among the processors. An IP would be created in the local memory of the processor on which the 
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creating process resides. If an IP had to be transferred to another processor, the entire IP could be 
copied over the communication network. Although this sounds inefficient, communication costs 
can be minimized by having "neighbour" processes reside in directly connected processors, or 
even in some cases time-share the same processor, where the economics justify it. There is a 
considerable  body  of  work  on  different  strategies  for  handling  communication  between 
processors, and for doing the routing when paths are tied up or damaged, and I was struck by 
how similar some of the problems they have to solve are to those we had to solve for FBP. I 
found the article by P. Gaughan and S. Yalamanchili (1993) a good survey, as well as providing 
some interesting solutions and simulation results. Of course, I am not a hardware person, but it 
does seem that some of the techniques described would support FBP quite nicely. 

Most of the academic work with multiprocessor configurations seems to be oriented towards 
determining what parallelism can be obtained from a COBOL or FORTRAN program. However, 
MIT has  a  dataflow computer  called  Monsoon,  which  "demonstrates  scalability  and implicit 
parallelism using a dataflow language" (Bell 1992), to be followed by one called T* which will 
be "multithreaded to absorb network latency". Researchers at Berkeley are using a 64-node CM5 
to explore various programming models and languages including dataflow. There is an enormous 
amount of research going on in the areas of multiprocessors and multicomputers. This is a whole 
area of specialization within computing research, and one which I expect I will never get to know 
very much about! However, a lot of people who do have some understanding of this area see a 
good match with FBP. Applications designed using FBP should map very naturally onto a system 
of communicating processors. If you have more processors than processes, this mapping should 
be pretty easy; if less, then some processors are going to have to time-share, just as the present 
implementations  of  FBP do  today.  Here  is  a  quote  from an  article  (Cann  1992)  comparing 
FORTRAN with functional languages for programming tomorrow's massively parallel machines 
(remember that we related FBP to functional languages in an earlier chapter): 

"Tomorrow's parallel machines will not only provide massive parallelism, but will 
present programmers  with a combinatorial  explosion of concerns and details.  The 
imperative  programming  model  will  continue  to  hinder  the  exploitation  of 
parallelism.  

"In  summary,  the  functional  paradigm  yields  several  important  benefits.  First, 
programs are more concise and easier to write and maintain. Second, programs are 
conducive  to  analysis,  being  mathematically  sound  and  free  of  side  effects  and 
aliasing.  Third,  programs  exhibit  implicit  parallelism  and  favour  automatic 
parallelization. Fourth, programs can run as fast as, if not faster than, conventional 
languages."

One  last  point  about  the  data  flowing  between  these  computing  engines:  a  lot  of  the 
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mathematically  oriented  work with  big  computers  (and most  of  this  work is  mathematically 
oriented) seems to assume that what should travel between the processors is either values, like 
integers or strings, or messages. I actually started out with values in my early work, in 1967, but 
became convinced over the years that you should send whole "things" (entities, records or IPs), 
which stay together as they travel, rather than low-level datatypes (e.g. integers or strings) which 
are  not  in  the  application  domain.  Our  experience  is  that,  if  you  decompose  a  record  into 
individual values, it may be so expensive to recombine them that it's not worth it. 

FBP without FBP 

Maybe now is the time to talk about how to do FBP without FBP software. This could be a 
stepping stone  to  full  FBP for  a  number  of  companies.  Many of  the  basic  concepts  can be 
simulated with conventional languages without any special software. A friend of mine took our 
AMPS course, but then went to work on a COBOL application. In those days we had no FBP 
support for COBOL, but he told us AMPS had helped him write better COBOL programs, by 
suggesting better ways to structure his code. 

Of course, you could even use JCL, using files for your connections, if you didn't care about 
overhead. Remember that the steps in a job must execute in a fixed order, so you would have to 
string out your network into almost a straight line - and forget about loop-type networks. Another 
similar approach is to use secondary transactions in IMS - this has actually been tried several 
times,  but  the  overhead  prevents  the  granularity  from being  made  fine  enough  to  be  really 
productive. 

A number of Data Flow COBOL products available in Japan generate pure COBOL from data 
flow specifications, which can then be compiled and link edited like any other COBOL program. 
They support rather simple networks, but require no special run-time software. 

An article (Kar 1989) written by a senior engineer with Intel  Corporation,  shows how to do 
calculations using data flow, rather than synchronous code. He gives the actual C code to do this. 
He sees what he calls "data flow multitasking" as a way that we can use today to write programs 
which will not only be easy to port to the powerful, multiprocessing machines coming on stream 
during  the  90s  (and  he  should  know!),  but  which  will  take  advantage  of  these  machines' 
capabilities. In the summary section he says, 

"Data-flow multitasking is a promising solution to the challenges software faces over 
the next decade.  It involves looking at a sequential program through new eyes [my 
italics]. ... Data-flow multitasking is particularly relevant for real-time applications."

Along somewhat similar lines, some of my early data flow research was done using a single APL 
program to simulate the scheduler. In this case, different processes were implemented as sections 
of a single APL program, and control was transferred between them by using a computed "goto". 
This would be very easy to do in any HLL. Another approach would be to use single data areas to 
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represent connections, together with a switch to indicate whether a given area is occupied or not. 
The scheduler could then cycle looking to see which process has data waiting to be processed. 
Wayne  Stevens  pointed  out  (1991)  that  non-looping  FBP  components  are  very  similar  to 
subroutines,  and  therefore  networks  consisting  mostly  of  non-loopers  should  be  easy  to 
implement directly using a HLL. 

At the beginning, I mentioned the growing use of these concepts for programming distributed 
systems.  I  would  like  to  mention  the  recent  IBM  announcement  of  IBM  Messaging  and 
Queuing (MQSeries). Similar efforts by other companies are listed in a recent article (Moad 
1993). IBM plans to bring out a set of products which will allow asynchronous communication 
between a large set of IBM and non-IBM platforms. There will be a standard interface based on 
the concept of queues, which will relieve programmers from the complexities of making different 
applications communicate between different vendors' hardware and software. Instead of having 
to use one set of macros for VTAM, different commands for CICS, still another set for IMS, all 
applications will use the same simple set of MQI (Messaging and Queueing Interface) calls. This 
concept seems to me to be completely compatible with the application structuring ideas presented 
in this book. In Chapter 15, we talked about the ability to "cleave" networks across systems - the 
combination of FBP and MQSeries or similar software should provide a very powerful way of 
splitting an application across multiple systems or locations, or of moving functions from one 
node to another as desired.  As I said in that chapter,  cleaving applications between different 
computers introduces new problems of synchronization,  but they will  definitely be solved! It 
doesn't make sense to try to pretend that a distributed system is one big, synchronous application. 
If you request data from a remote location, you want to be able to do other things while the data 
is  working its  way through the system.  Systems are getting just  too big.  Also,  many of the 
systems  which  are  being  connected  "speak  different  languages",  so  we  are  seeing  the 
development of standards which will allow them to interpret each others' data formats. I predict 
that those problems which will inevitably arise will be solved, but not necessarily by means of 
one general solution for every problem. 

As  you  read  this  chapter,  I  hope  you  have  got  some  impression  of  how  ideas  spring  up 
independently in different places and times, how they flower in unexpected places, how they 
cross-pollinate and give rise to interesting new hybrids. You have to be a botanist to keep track of 
it all! There are many other concepts and languages, other than the few I have mentioned here, 
which have points in common with FBP, and which have certainly been influential in the field of 
computing, but there is not room in this book to do them justice. They have cross-fertilized each 
other and in many cases only industry archivists know which led to which. Examples which 
spring  to mind are:  SIMULA,  MODULA-2 (and now  MODULA-3),  Concurrent  Pascal,  Ada, 
Lucid, Occam, .... 

It would be wonderful if any readers who are expert in these different languages could share their 
knowledge and insights with the rest of us. I have occasionally dreamed of collecting all the 
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developers and theoreticians of concurrent, stream-oriented, modular systems together in a huge 
symposium, and seeing if we can't get some synergy going. I have found that there is something 
about data-orientation which seems to allow practitioners of different disciplines to communicate 
(just  as IPs do for different  languages!).  I  sincerely hope that  we won't  waste our energy in 
internecine  wars,  as has  happened in some disciplines,  but  that  we will  all  be able  to work 
together towards a shared goal. There are far more similarities than differences in our work, and 
if we can get a real dialogue going, who knows what we might achieve together! 
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[This article harks back to a technology (unit record machines or EAM) so inconceivably ancient  
that many of my readers were probably not born then - yet this was the only form of business  
automation many companies used in those days! 

DFDM was the second implementation of FBP at IBM.]

The following was sent to me by a colleague named Art Huber a few years ago - you can get 
some idea of his amusing way of expressing himself from what follows. It is reprinted with his 
permission. 

Subject: DFDM thoughts
Last night, when I couldn't sleep because of a cold, I thought about DFDM.  Why not? 

I thought about the analogies we use as an aid to understanding it.  None will be completely 
satisfactory, but I have been working on one that I have not heard previously. I think it is most 
useful for old farts such as me.  Less experienced programmers and analysts, whose synapses are 
not already connected hierarchically don't need this one. 

Once upon a time there were no computers. There were, however, unit record machines. There 
were collators, sorters, keypunches, printing accounting machines, calculating summary punches, 
etc. 

I think a DFDM network is very similar to a job in a unit record shop. 

Batches of records move from machine to machine. 
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Each machine performs a single operation on the data. 

Each machine is a general purpose machine that is programmed to customize it for the required 
task. Note that by "general purpose", I do not mean that it can perform any task; I mean that it is 
not tied to a particular record format or job. 

There are some significant differences, of course, between DFDM and a unit record shop. 

The DFDM "machines" run at electronic speed rather than mechanical speed. 

They are cheaper to build. If you need a new special function machine, you can create it  in 
software. Consequently, there is no economic advantage to creating multi-purpose machines as 
there would be with real unit record machines. 

DFDM machines can be replicated as needed. The new copies don't cost anything to operate and 
don't take up floor space or use additional electricity. 

DFDM machines are not restricted to 80 character records. 

The records will not fall on the floor between steps. 

Parameters that tailor DFDM machines can be much simpler than unit record plugboards. For 
example, in DFDM, a field can be defined by specifying its starting position and length. Unit 
record machines require a character by character definition. 

Because setup is so much cheaper (since the DFDM machines are virtual), it is viable to process 
batches of one record with DFDM. 

DFDM machines need not be limited in the number of accumulators they contain, since they are 
implemented in software. 

Jobs do not have to be scheduled based on machine availability,  since DFDM machines are 
virtual. Of course, they are implemented on real machines (computers) and are constrained by 
availability of computer resources. 

Isn't this fun? 

I offer this for your consideration. It does point out that the job of "programming" in DFDM is 
very different from what we think of traditionally.  We may even have an opportunity for old unit 
record analysts. 

AND EVERYTHING OLD IS NEW AGAIN!
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I did not want to call this chapter "Conclusion" as I hope it is more of a beginning than an ending. 
We have certainly travelled a long distance, and if you have stuck with me you are definitely to 
be congratulated! However, the journey in many ways is just beginning. We have come a long 
way, but these are only the first small steps. 

Programming in the year 2010 is going to be very different from what we are used to today, it is 
going to  feel very different, and it is going to be done by different types of people from the 
practitioners of today. Brad Cox wants to get his "Software Industrial Revolution" started, and I 
agree the concepts are there and the time is right. He points out that today we are still software 
craftsmen, making once-off items one piece at a time with very simple tools. If you want to read 
about  how  things  were  done  before  mass  production,  read  "A  Book  of  Country  Things" 
(Needham  1965).  These  were  smart  people  who  knew  their  materials,  and  many  of  their 
techniques were excellent.  But you didn't  go to the store to buy a standard part  -  you made 
whatever  you  needed yourself.  Now, isn't  it  rather  strange that  so many programmers  today 
would still rather build a new piece of code than (re)use one that already exists! Some of them 
certainly do it because they love it,  and there is a role for these people to play, but modern 
business cannot afford to continue to have code built laboriously by hand. In the old days, people 
did this because they  had to; today, we have had to divide up the work - some people do the 
designs, others make them. Machines make all of us more productive. Are people less happy 
today? I believe only a Luddite would maintain that the old days were better - yes, some of those 
old tools were works of art, but we have magical things available at our fingertips which one of 
those old-timers  would give his  eye-teeth  for.  Cheaper  doesn't  have to mean nastier.  If  you 
believe that programmers don't reuse on account of their love of their craft, I think that's wrong. 
Most programmers don't reuse because it's just more trouble than building new. But, you see, our 
experience  with  FBP  has  been  completely  different  -  in  one  case  I  mentioned  earlier  a 
programmer used an off-the-shelf component to do a function, even when she could have done 
the same thing by adding a single line to an adjacent PL/I component she was writing! So there 
are profound psychological differences between the two environments. 

I believe that an important part of the change is that application developers who are trained in 
FBP are moving away from procedural thinking towards what you might call "spatial" thinking. 

- 321 -



Chap. XXIX: Endings and Beginnings

Procedural thinking is quite rare in ordinary life, so it's not surprising that people find it difficult, 
and that its practitioners are (viewed as) different in some ways from ordinary mortals. 

If you start to look for examples of procedural thinking in real life, you discover that there are in 
fact very few areas where we do pure procedural thinking, but there is one which we have been 
doing since we lived in caves, and that is cooking. Some years ago at the IBM Research Center in 
Yorktown, Dr. Lance Miller started studying the differences between recipes and programs. He 
noticed that recipes often had implicit parallelism, e.g., "add boiling water" implies that the water 
must have started boiling while some other step was going on, so that it would be available when 
needed. The term "preheated oven" is so common we probably don't  even notice that it also 
violates sequentiality. People say and write things like this all the time without thinking - it is 
only if you try to execute the instructions in a rigidly serial manner (i.e. play computer) that you 
may run into some surprises! 

The other thing he noticed was that the individual steps of the process very often start with a verb 
and then add qualifiers, e.g. "boil until done", "beat egg whites until soft peaks form", so you 
know very early in the sentence what kind of activity you will be doing. In programming, we 
usually bury the "verb" deep inside a nest of do-loops to get the same effect, e.g. 

do while a.... 
    if c is true 
        then 
            do until b... 
                compute 
            enddo 
    endif 
enddo 

The effect of this is that you don't know what operation you are going to do until you are deep 
inside a nest of do-loops or conditional statements. This would be like telling a visitor to town, 
"Until  you  come  to  the  fountain  after  the  church  across  from the  train  station,  keep  going 
straight". The visitor would get a pretty strange impression of your town and its inhabitants! 

The other main kind of procedural behaviour in fact is just this one: following directions. Have 
you ever tried following someone's  directions, only to find out that they forgot one item, or 
someone changed a street sign, and you are now facing north instead of west (if you can even 
figure that out). If you want to make a grown man or woman cry, ask them to assemble a child's 
tricycle, whose instructions have been translated into English from another language by a speaker 
of a third language, and which probably describe the wrong model anyway, if you could figure 
out what it meant. A lot like programming, isn't it? Maps are much easier because they let you 
visualize relationships between places synoptically, so you can handle unexpected changes, make 
corrections, and even figure out how to get to your destination from somewhere your informant 
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never imagined you'd land up! On a recent trip to England, I found myself very impressed with 
the amount of information packed into the signs announcing "roundabouts": general shape of the 
roundabout,  angles,  destinations and relative sizes of roads entering the roundabout -  and all 
specified visually! 

This is something like the difference between conventional programming and FBP - FBP gets 
you away from procedural thinking and lets you think map-style. 

It occurred to me recently that we finally have a unique opportunity, both to take advantage of 
the CPU power available on most programmers' desks today and to actually use this power to 
take advantage of natural  human abilities.  Just  like  other  human abilities  which we take for 
granted, visual processing is extremely difficult to program into a computer, and requires a lot of 
computer horsepower. However, many programmers today have powerful machines sitting on 
their desks which are basically being used as "dumb" terminals. A few years ago, Bucky Pope of 
IBM did a study in which he concluded that "editing" text really doesn't exercise a machine much 
- most of the time the programmer is just thinking. So entering a linear string of COBOL doesn't 
take advantage of the power on his or her desk. And what power! If you remember Chapter 22 on 
Performance, I said that it took 10 microseconds to do an API call on an IBM 168 (on which we 
ran a bank - 5,000,000 accounts) 20 years ago, and 50 microseconds on the machine on my desk 
at home today - so that means I have the processing power to run 1/5 of a bank right here on my 
desk (yes, I know that's stretching it a bit!). What we might call "visual programming" could 
actually start to take advantage of the relatively enormous processing power available to each 
programmer  today.  And  visual  programming  means  much  more  than  drawing  pictures  to 
represent  logic  -  it  means  developing  a  synergy  between  human  and  machine  which  takes 
advantage of one of the human's strong suits, not his or her weakest. A recent article by K. Kahn 
and V.  Saraswat  (1990),  alluded to earlier,  which I  found absolutely visionary,  describes  an 
approach to a totally visual style of programming, which would not only have a visual syntax, but 
would also show computation using visual transformations. Software supporting this would have 
to be able to perform and understand topological transforms, just as humans do without effort. 
Interestingly, my group at IBM built a visual animation showing the creation and movement of 
IPs through an FBP network,  and showed this at a CASE conference a few years  ago - this 
proved a very effective way of conveying some of the basic concepts of FBP. We have also 
speculated that visual interaction with a picture of a network would be a very natural debugging 
environment.  At  this  juncture,  7  years  from the  end  of  the  century,  I  believe  we  have  the 
computer horse-power to make such approaches economically feasible - now we just have to 
develop the technology. 

Up to now, I have concentrated on technology, and I confess to being technologically-oriented, 
so assume we have gotten these details out of the way. However, we also have to look at the 
sociological and psychological factors. What will be needed to get such a technology into use in 
the workplace? Well, for one thing it is going to need extensive cooperation between business 
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and academia. As long as business and academia are two solitudes, staring at each other across a 
deep chasm of noncommunication, we are not going to be able to make the transition to a new 
way  of  thinking.  Business  has  gotten  the  impression  that  it  has  to  become  a  bunch  of 
mathematical geniuses to do the new programming, because the academics are broadcasting that 
image. So it retreats into its corner, and keeps trying to build and maintain systems using linear 
COBOL text. However, I don't believe that we all have to become mathematicians - nothing in 
this book would give a bright 16-year-old any difficulty at all. 

Instead,  at  this  point  in  time, business people are more willing to hire hundreds of COBOL 
programmers than to invest in new technologies. The problem is, if you were a CIO (maybe you 
are),  which technology would you  invest  in?  Well,  currently it  is  not  a very hard economic 
decision - it makes more sense to stay with the COBOL coders. At least you can do anything 
with COBOL (no, I am not refuting everything I have said in this book) - but it takes ages to do 
it, and the result is almost unmaintainable. Now suppose you were running a cotton plantation a 
century  or  so  ago,  using  all  manual  labour  -  not  very  productive,  but  at  least  output  was 
predictable,  if  slow. Imagine, now, that some city slicker  comes along with a cotton-picking 
machine, which he claims is going to improve productivity enormously. But you, the land-owner, 
figure that you are going to have more highly trained people running it, it may break down at 
awkward moments, it's going to need parts from halfway across the country, and so forth. You'll 
do the "smart" thing, right? It wasn't until the prevailing morality started to take into account the 
feelings and needs of everybody involved and the technology reached a certain level of maturity 
that the balance tilted in favour of using technology (I wish I could say that this has happened 
universally, but at least it's a start). I date many of my feelings about technology to a visit I made 
to a match factory as a schoolboy (circa 1948) - that was the nearest I've ever come to seeing 
humans used as robots, and I never want to see anything like it again... 

I often think the attitude of business is best summed up by a cartoon I saw a few years ago - a 
scientist type is trying to sell a medieval king a machine-gun, and the caption says, "Don't bother 
me - I've got a war to fight"! Why should we change the way we do application development? 
Everyone's happy with the status quo, right? I don't think so. I think in fact there is a general 
dissatisfaction with the way things are now - it's just that nobody has shown a clear way to solve 
it that will benefit all the stakeholders. Over the last few decades, there has been an unending 
series of snake-oil  salesmen,  each peddling their  own panacea.  Why do you think each new 
remedy gets adopted so enthusiastically? Because there is a real need out there. So far, they have 
all turned out to be inadequate in some way, and usually get dropped. This is understandable, but 
it  is  very  important  that  we  learn  from each such experience,  so  that  collectively  we move 
forward, rather than just jigging in one place all the time. 

But, to give all groups a chance to take potshots at me, I am afraid academia is partly to blame as 
well.  Some academics, I am afraid, are doing the modern equivalent of fiddling while Rome 
burns. A professor of computer science told me a few years ago that, at his university, a thesis on 
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application  development  technology just  wouldn't  be  accepted.  I  found this  shortsightedness 
absolutely incredible, and he agreed! It would seem to be obvious that application development 
technology is fascinating stuff, and it's even useful!  Hopefully this attitude has changed in the 
years since, but I'm sure it has cost application development research a good decade or two.  
Even if theses on application development are now being written, how do we get these ideas into 
programming shops around the world? 

I have a warning for any academics who may be reading this - there is so much stuff to read now 
in this area, that it would be quite understandable if you ignored papers like the one that appeared 
in the IBM Systems Journal back in 1978, because they aren't full of Greek letters. However, we 
were using these concepts to run a real live bank, and building up real experience trying to make 
these concepts  work.  This  experience is  priceless,  and perfectly  complements  the interesting 
theoretical work that you people are doing all over the world. 

Inflexible systems not only cost money, but they contribute to users' perception of computers as 
inhuman, inflexible, and oppressive. How many times have you been told, "It's the computer", 
when  confronted  with  some  particularly  asinine  bit  of  bureaucracy?  We  know  it's  not  the 
hardware's  fault  but  too  often  it's  the  fault  of  some  short-sighted  or  just  over-burdened 
programmer. Does the public know this? If they do, they've probably been told, "Yes, we know 
it's awkward, but it would cost too much to change it." Why does it cost so much? If there is only 
one message I want to leave you with after reading this book, it's  that  the root cause of the 
present state of programming is the von Neumann paradigm. It's that simple, and that difficult 
(you know we humans prefer things to be complex but easy, like taking a pill, but life isn't like 
that). 

We started this book talking about how we have to relax the tight procedural nature of most of 
today's programming, imposed, not so much by the von Neumann machine, as by the mistaken 
belief  that  we  still  have  to  code  according  to  the  von  Neumann  model.  Internally,  today's 
computers are no longer tightly synchronous - nor are the environments that they run in. This can 
now be seen as a special case of a much larger issue: the key to improving productivity and 
maintainability in application development and to making programming accessible to a wider 
public is to make the world inside the computer match more closely to the world outside it. The 
real world is full of many entities all doing things in parallel: you do not stop breathing when I 
draw a breath. It  is  therefore not surprising that we were specifically designed to be able to 
function in such a world, and we get frustrated when we are forced to only do one thing at a time. 

In a similar development, but at a different scale, we are starting to distribute our systems across 
different machines and/or different geographical locations. Imagine a world of multiprocessor 
machines communicating over LANs, WANs or satellite links across the whole world, and you 
get a vision of a highly asynchronous, massively parallel data processing network of world-wide 
scope. Since this is clearly the way our business is going, why should we have to be restricted to 
using  synchronous,  non-parallel,  von  Neumann  machines  as  the  processing  nodes?!  So  our 
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applications would be networks, networking with other networks, extending eventually around 
the planet. 

Fact is starting to catch up with fiction: John Brunner is thought to have originated the use of the 
word "worm" in his  1975 novel,  The Shockwave Rider,  to  describe an autonomous program 
travelling the computer net. Hackers (using both the positive and negative connotations of that 
term) have developed computer viruses, whose behaviour mirrors that of biological viruses. If 
you have had a system attacked by one of these critters, it may be hard for you to think kindly 
thoughts about what are usually perceived today as nuisances at best, and at worst something 
downright dangerous and destructive. However, a lot of recent work by responsible scientists has 
suggested that crossbreeding these two species may result in very powerful  tools for making 
computers more user-friendly. Read what E. Rietman and M. Flynn (1993) have to say about 
worms and viruses in the future. They describe scenarios such as: worm programs assembling 
personalized newspapers for subscribers, using data extracted from databases all over the world; 
"vampire worms" taking advantage of available CPU time to do useful jobs (at night, mostly - 
hence the name); viruses automatically inserting hypertext buttons into text databases; viruses 
doing automatic  database compression and expansion as time becomes available,  scavenging 
dead data, monitoring for broken data chains, and on and on. In fact, there is already a precursor 
of this kind of facility roaming the net, called "Gopher" (Martin 1993), which lets you look at the 
weather in Australia from a terminal in Ohio, and generally roam around "gopherspace" from any 
terminal connected to Internet, or from a terminal talking to a remote computer that can access 
the Internet. Gopher now seems to have been upstaged by the WorldWideWeb, which sounds 
truly marvellous (Cramer 1994)!  [I seem to have been truly prescient here - remember this was 
written in 1994!]  As an interesting aside, Rietman and Flynn also point out that worms could be 
a useful method to "program massively parallel computers" (their italics). 

Talking about fact catching up with fiction, some recent work coming out of Xerox PARC is 
even more incredible.  Instead of creating make-believe environments, which people can move 
through using the computer (Virtual Reality), how about enhancing our real-world environment 
with a myriad of small computing devices that we can talk to, using voice and gestures, and that  
talk  to  each  other,  perhaps  about  us?  How  about  an  office  that  automatically  adjusts  the 
temperature and humidity to suit whoever is occupying it, and plays soothing music if you want 
it to?  How about children's building blocks that can be assembled into working computerized 
structures, or a pipe that you can use to point at a virtual blackboard, has a small microphone and 
speaker  inside it,  and perhaps monitors  its  user's  health as  well?!  A lecturer  once asked us: 
"Where will computers be used?" and he answered: "Anywhere that it makes sense to put the 
word intelligent." For example, not just intelligent cars or planes, but intelligent offices, desks, 
and blackboards, intelligent bookshelves - maybe even intelligent paper and pencils.  This work 
goes under the general name "ubiquitous computing" or "ubicomp", and you can read about it in 
Vol. 36, No. 7 of Communications of the ACM (Wellner et al., 1993).  This enormously exciting 
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work seems to me to be totally compatible with everything that has gone before in this book. 

The IBM scientist Nat Rochester once described programmers as working more closely than any 
other profession with what he called pure "mind-stuff". If you imagine a world-wide network of 
"mind stuff", then this corner of the universe is starting to see a new type of intelligence, or at 
least a new vehicle for intelligence. Baird Smith of IBM used to describe software as "explosive" 
while hardware is "implosive". While software, which is built out of mind-stuff, is becoming 
more and more powerful and complex, hardware is getting smaller and smaller (although more 
complex!) and cheaper and cheaper - as it should do, since, after all, its basic building material is 
sand! This is a perfect example of what Buckminster Fuller called "doing more with less". 

I think we are starting to see a truly massive convergence of ideas. It is unfortunate that most of 
the science-fiction which has been accepted by the main stream is dystopian, because most good 
science fiction is very optimistic and upbeat. It has always surprised me how few programmers, 
who live their professional lives on the cutting edge of change, actually read science fiction. 
Does this reflect  a perception that what they do is not imaginative and exciting? Is this still 
another vicious circle? 

J.W. Campbell Jr., the editor of Analog, originally Astounding, was an inspiration to a generation 
of science-fiction readers. He taught us the value of considering new ideas objectively, avoiding 
the extremes either of rejecting ideas out of hand because they are new and different, or accepting 
them instantly without proper evaluation. It was from his editorials that I learned the idea of 
"rope logic", which I believe this book embodies: the ideas described in this book are not built up 
on a basis of Aristotelian syllogisms, but as a multitude of small threads. While individually none 
of the threads may be very strong, they complement  each other,  resulting in a rope of logic 
which, in its totality, is strong enough to move pyramid blocks around (and maybe even a whole 
industry)! By the same token, you, my readers, may be able to snap a few of these threads, but 
my conviction is that the rope as a whole will remain as strong as ever. Am I deluding myself? 
The only possible test is the systems built using these concepts, and they are some of the sturdiest 
systems the companies that use them have in their collection. 

While it may be true that some science fiction is naïve, some of the most exciting and forward-
looking thinking going on today is described in the fiction and fact pages of today's science-
fiction magazines. Read them and stretch your minds! If we have the will, we can make pretty 
good lives for ourselves. In my experience it is the pessimists (have you noticed they usually call 
themselves realists?) who show a certain naïveté - the naïveté of believing that things will go on 
just the way they are, that there will not be technological, political, commercial, social, artistic or 
spiritual breakthroughs. In fact, the pace of change in all areas is on an accelerating curve - if you 
doubt this, just look back 50 years and see how far we have come. We are only limited by our 
imaginations, and that's a resource that is never going to be used up! Even if you feel solving the 
world's problems is too big a task, I see no reason why we can't at least tackle the smaller task of 
making programmers more productive and programming more fun - there is no law that says 
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work has to be drudgery. In fact, when one masters a medium, and the medium fits the hand, 
there is a feeling of being at one with one's tools which can border on the transcendent. That's 
what training is about - not to turn out a generation of button-pushers, but to produce "masters". 
Our goal in our profession is not to be able to push a button and turn out a payroll program, but to 
be more like those ancient Celtic artisans who made a drinking vessel a work of art. Were they 
having fun? You just bet they were! And so can we - so why not start right now?! And if this isn't 
sufficient justification by itself, wouldn't it be neat if we could have happier, more productive 
programmers,  working  for  companies  that  are  more  responsive  to  their  clients,  and  saving 
everybody money as well (and therefore improving the quality of life for you and me). Utopian? 
Perhaps, but if we have a goal, we can start moving in that direction, and we can measure how 
much progress we have made towards getting there. If we have no goal, then we'll be just wasting 
energy running round in small circles. Programming is a part of life, so this idea really shouldn't 
surprise anybody! 

So what's going to happen over the next couple of decades? I used to think that if you built a 
better mousetrap, everyone would beat a path to your door. I learned differently by personal 
experience - and then I read Kuhn (1970), who put it all in perspective for me. Did you know that 
the phlogiston theory didn't yield instantly to the oxygen theory the moment someone did the 
deciding experiment? Some people never really took to this weird oxygen idea! Me, I'm betting 
on the next generation. Here we have a new paradigm which is clearly superior, but experience 
shows that it may take as much as a generation for it to catch on. But it could take a lot less than 
that! By the way, if you want to learn more about paradigms, how they affect how we think and 
how they get adopted, Kuhn's ideas have been extended over the last few years in a series of 
thought-provoking books and video tapes by Joel Barker (e.g. Barker 1992). Necessary reading! 

As I have tried to show in Chapter 26, some of the most advanced practitioners of OOP are 
discovering FBP or something very close to it. There will be people who say programming will 
never become simple, or that the man or woman in the street will never see it as enjoyable. I 
personally believe that computers and people will always need go-betweens, just as people from 
different cultures do (sometimes so do members of the same family!). Programmers are skilled at 
interpreting between people and machines and there will always be a need for their services. 
However,  by  giving  programmers  inadequate  tools,  and  then  blaming  them  if  they  aren't 
successful, we scare off the very people who would be best at this work. It is time we stopped 
doing that! It's never too late to realize that we took a wrong tack a few decades ago, and change 
direction. 

One of the most exciting things about FBP for me is that it provides a bridge between ideas that 
are currently restricted to very technical papers, and businesses which think they are stuck with 
COBOL assembly  lines  for  ever.  We  also  have  today  the  potential  to  create  a  new era  of 
productivity,  based  on  a  marketplace  of  reusable  components.  Wayne  Stevens,  who  is 
responsible for a number of the ideas in this book, was very optimistic about the potential of 
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these  concepts  and  was  tireless  in  promoting  it  within  the  DP  community,  putting  his  not 
inconsiderable reputation behind them. Where I was the  paradigm shifter, to use Joel Barker's 
phrase, he was the paradigm pioneer. He believed, as I do, that these concepts will have a big 
effect on our future as an industry, and I deeply regret that he was not able to see them become 
widely accepted in his lifetime. I have always liked the phrase, "Will those who say it can't be 
done please move aside and let the rest of us get on with doing it" - this was very much his 
attitude to life! I and my colleagues over the years have had a glimpse of the future of the DP 
industry,  and I have tried to share this vision with my readers. I hope that you have enjoyed 
reading about it as much as I have enjoyed telling you about it! 
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In Chapter 23, we described the THREADS notation for linking components into networks - this 
will also be repeated below in summary form. However, perhaps even more important are the 
conventions  for  writing  components,  as  these  are  what  will  allow  independently  developed 
components to be combined into a single network without the requirement that they be developed 
by  the  same  person  or  even  in  the  same  location  (apart  from the  normal  requirements  for 
consistency of IP and stream formats). 

Here is a simple component written in C to copy IPs from IN to OUT. Let's call  this rather 
unoriginally copydata. I am using the "large" model and C calling convention. 

A  THREADS component  is  a  regular  C  subroutine,  so,  as  you  might  expect,  the  first  few 
statements are the declares. 

/* Include for THREADS service call prototypes */
  #include "compsvcs.h"
  /* This header file also includes definitions of "anchor" 
     and "port table" */ 
  /* Prototype for component code */
  int copydata(anchor proc_anchor)  {
  /* Initialization of "port table" - the array dimension
     must equal the number of ports */
  port_ent port_tab[2] = {{"IN\0",0,0,0},{"OUT\0",0,0,0}}  
  /* Declares for variables used in component body*/ 
  void *ptr;
  int value;
  long size;
  char *type;
  /* Component Body  */
    value = dfsdfpt(proc_anchor, 2, port_tab);
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    value = dfsrecv(proc_anchor, &ptr, &port_tab[0], 0, 
         &size, &type);
    while (value == 0)
    {
     value = dfssend(proc_anchor, &ptr, &port_tab[1], 0);
        if (value != 0)
          value = dfsdrop(proc_anchor, &ptr_2);
        
      value = dfsrecv(proc_anchor, &ptr, &port_tab[0], 0,
           &size, &type);
    }
  return(0);
}

The first action is always to initialize the port table using a call to  dfsdfpt - the 2nd parameter 
of the call to dfsdfpt must match the dimension declared for the port table. This number must 
also match the number of port names specified in the parameters to dfsdfpt . Note: dfsdfpt 
modifies the port table, so this must not be defined as constant. 

The return statement causes deactivation (but not necessarily termination, as described above). 
The return code value on the return statement determines whether the process is willing to be 
reactivated: a value of 5 or greater forces termination even if data is available. 

API Calls: 
Here are the API calls available to components in THREADS: 

Create a Packet:
  value = dfscrep(proc_anchor, &ptr, size, type);
Define ports:
  value = dfsdfpt(proc_anchor, port_count, port_tab);
Receive an IP:
  value = dfsrecv(proc_anchor, &ptr, &port_tab[port_no], 
           elem_no, &size, &type);
Send an IP:
  value = dfssend(proc_anchor, &ptr, &port_tab[port_no], 
           elem_no);
Drop an IP:
  value = dfsdrop(proc_anchor, &ptr);
Pop an IP off the stack:
  value = dfspop(proc_anchor, &ptr, &size, &type);
Push an IP onto the stack:
  value = dfspush(proc_anchor, &ptr);
Close a port element:
  value = dfsclos(proc_anchor, &port_tab[port_no], 
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           elem_no);

Parameters: 
Note that the ptr, size, type and port table element parameters all have &'s attached, except 
in the case of dfscrep , where only ptr has it. The &'s are required because these parameters 
may be modified, and C parameters are all passed by value (except for strings and arrays). In 
some cases a particular service does not set them, but for consistency &'s are used for all of them 
(except dfscrep ). 

port_count and  elem_no are  all  binary  integer  variables  (int). size is  binary  long. 
dfscrep is restricted to a maximum of 64000 bytes. 

• proc_anchor: a variable of type anchor (defined in thxanch.h) 

• ptr: a void pointer used to point at IPs 

• size: a long variable containing the IP's size 

• type: a null-terminated string of up to 32 chars 

• port_count:  parameter  to  dfsdfpt -  must  match  the  dimension  of  the  defined 
port_tab array for this component 

• elem_no: this specifies the element of the appropriate port to be used in a send, receive 
or close. These are only required for array-type ports, where they number up from 0. For 
non-array ports, this parameter must be 0. 

• port_tab: this parameter is declared as an array of type port_ent (see below), where 
each  element  corresponds  to  one  of  the  ports  known  to  the  component;  the  whole 
structure is passed to dfsdfpt, while specific elements of port_tab are passed to send, 
receive and close using &. 

• port_name_n: port name to be used by dfsdfpt; the number of these must match the 
port_count parameter 

All pointers in the following declarations are "far" pointers. 

Declare for port_ent: 
  struct _port_ent
   {
      char port_name[32];
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      void *reserved;
      int elem_count;
      int ret_code;
   };
   typedef struct _port_ent port_ent;

After a call to dfsdfpt, elem_count in each port_ent instance will be set to the number of 
connected elements for that port, and ret_code will be set to 0 or 2, depending on whether that 
port was connected or not. 

Declare for anchor (thxanch.h): 

struct _anchor {
    int (* svc_addr) ();
    void *proc_ptr;
     } ;
 typedef struct _anchor anchor;

Service return codes: 

dfscrep:
        0       OK
dfsdfpt:
        0       OK - but some elements of port_tab may have their
                ret_code fields set to 2, meaning "port name not
                found"; a receive or send from or to such a 
                port_tab element will result in a return code value
                of 2.  
dfsrecv:
        0       OK
        1       port element closed (end of data)
        2       port element not defined or not connected
dfssend:
        0       OK
        1       port element closed 
        2       port element not defined or not connected
dfsdrop:
        0       OK
dfspop:
        0       OK
        2       stack empty
dfspush:
        0       OK
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dfsclose:
        0       OK
        1       port element already closed 
        2       port element not defined or not connected

Limitations: 
There is a limit of 4000 elements per array port. 

Working storage for a component should not exceed a few thousand bytes (including the working 
storage of any subroutines it calls). If the component needs more than this, it should use one of 
C's dynamic allocation functions (e.g. malloc or calloc) to allocate the additional storage. 

Network Notation 
Networks are defined initially using a free-form notation, described briefly in Chapter 23. For 
instance, 

'data.fil'->OPT Reader(THFILERD) OUT -> IN Selector(THSPLIT) MATCH -> ...,
Selector NOMATCH -> ...

The general syntax for networks is quite simple, and can be shown as follows (using a variant of 
the flow notation which has started to become popular for defining syntax): 
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I have labelled the ports above and below the connection indicator (arrow with optional capacity 
figure)  "up-port"  and  "down-port"  to  indicate  that  they  are  upstream  and  downstream, 
respectively, of the connection. 

The main network may be followed by one or more subnets,  which have basically the same 
notation (each one starting with a label and finishing with a semi-colon). However, subnets have 
to have additional notation describing how its  external port names relate to its internal ones. 
Since this association is like an equivalence, we use the symbol => to indicate this relationship. 
Thus, 

, port-name-1 => port-name-2 process-A port-name-3,

indicates that port-name-1 is an external input port of the subnet, while port-name-2 is the 
corresponding input port of process-A. Similarly, 
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, port-name-1 process-A port-name-2 => port-name-3,

indicates that port-name-3 is an external output port of the subnet, while port-name-2 is the 
corresponding output port of process-A. For an example, see the example of subnets given in 
Chapter 23. 

Other syntactic elements:

IIP:
          *--------------------------* 
          |                          |
          |                          | 
   --- ' -*-*- any-char-ex.-quote ---*
            |
            |
            ' ---           

Two consecutive quotes are taken to mean a single quote. 

Up-port: Down-port:
   -*- port-name -*- [ --- element-number --- ] -*--*-
    |             |                              |  |
    |             |                              |  |
    |             *------------------------------*  |
    |                                               |
    *----- * ---------------------------------------*

element-number does not apply to the external port names of subnets. The asterisk indicates 
an automatic port (see Chapter 13). 

Conn:
   --- -> -*- ( --- capacity --- ) -*-
           |                        | 
           |                        |  
           *------------------------*

capacity does not apply to the external port names of subnets. 
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Proc-name:
   --- process-name -*- ( --- comp-name --- ) -*-*- ? -*- 
                     |                         | |     |  
                     |                         | |     |
                     *-------------------------* *-----*

The component name can be specified on any occurrence of the process name. The question 
mark indicates that tracing is desired. 

In Chapter 13 we alluded to the fact that we can specify that a process "must run at least once" - 
this is specified by means of an attribute file for the component,  which has the name of the 
component, and an extension of  atr, e.g.  thcount.atr. These files must be provided by the 
supplier of a component, and must have a specific format. So far, only the "must run" attribute 
has been defined - it is specified by coding one of the character strings must_run, Must_run or 
MUST_RUN, with optional preceding blanks, in the attribute file for a given component.  If no 
attribute file is found for a component, default values are assumed to apply (the default for the 
"must run" attribute is "need not run"). 

As mentioned in Chapter  23,  there is  also a  compiled (or compilable)  format for specifying 
networks - while this is obviously not appropriate for hand-coding by human users, it is easy 
enough to generate by means of software. It is a data-only C program, and specifies a network, 
together  with  all  referenced  subnets.  Its  importance  is  that  this  will  be  the  source  form for 
networks owned by customers, so THREADS must guarantee that any enhancements to it will be 
upwards compatible. These guarantees are essentially encoded in the C headers which it uses: 
thxiip.h, thxanch.h and thxscan.h. 

thxanch.c has been given above. The other two are defined as follows: 

thxiip.h
struct _IIP
   {
      int IIP_len;
      char datapart[512];
   };
typedef struct _IIP IIP;

thxscan.h
   struct _cnxt_ent {
     char upstream_name[32];      /* if 1st char is !,   */
     char upstream_port_name[32]; /* connxn points at IIP */
     int upstream_elem_no;
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     char downstream_name[32];
     char downstream_port_name[32];
     int downstream_elem_no;
     union cnxt_union {IIP *IIPptr; void *connxn;} gen;
     int capacity;
     };
typedef struct _cnxt_ent cnxt_ent;
struct _label_ent {
        char label[32];
     char file[10];
        struct _cnxt_ent *cnxt_ptr;
        struct _proc_ent *proc_ptr;
     char ent_type;
        int proc_count;
        int cnxt_count;
        };
typedef struct _label_ent label_ent;
   struct _proc_ent {
     char proc_name[32];
     char comp_name[10];
     int (*faddr)();
     void *proc_block;
     int label_count;
     int trace;
     int composite;
     int must_run;
     };
typedef struct _proc_ent proc_ent;

Note:  the  above  structures  are  not  the  internal  control  blocks  of  THREADS  -  they  are  an 
encoding of the free-form network specification notation. This separation will allow THREADS 
to be extended in the future without requiring network definitions to be reprocessed.
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Network Definitions 
In my book, "Flow-Based Programming", I describe the syntax of the network specifications of 
various  FBP dialects  that  were  in  existence  when  the  book was  written.  JavaFBP,  the  Java 
implementation of the FBP concepts, did not exist at that time, so this web page has been added 
describing the syntax of JavaFBP network definitions. 

In JavaFBP we not only code components in Java but also define the networks as Java programs. 
The source code is on SourceForge under Subversion (SVN) for the Flow-Based Programmming 
project: SVN for FBP .

There is also a jar file - JavaFBP jar file - on the FBP web site.

One advantage of defining the network as executable code, as compared with other approaches 
that  merely  list  connections  in  a  language-independent  way,  is  that  the network can contain 
additional logic. This logic then controls the way the network is defined, rather than the way it 
runs. Some may regard this as a defect, rather than as an asset, and both views can certainly be 
defended, but one of the neat things it enables us to do is to adjust multiplexing levels of various 
structures in the diagram using a table of values (remember the multiplexing example in Sample 
DrawFlow Diagram). One merely retrieves a value from a table for the degree of multiplexing in 
a particular structure in the diagram, and this value is then used both as the index of a loop 
invoking the  connect statement, and as the index for the elements of an array-type port (see 
below for both of these terms). 

Since the way the syntax relates to the underlying diagram may not be all that clear, a brief 
description is in order.  At the end of this page, I have given an extremely simple JavaFBP 
component.

Any JavaFBP network definition starts as follows:
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public class xxxxxx extends Network {
    protected void define() {

where xxxxxx is the Network name, including the usual imports, copyright statements, etc. Of 
course you will have to import classes for JavaFBP objects, such as Network and Component, as 
well as any JavaFBP "verb" classes you may be using. 

The network definition is terminated with: 

}
        public static void main(String[] argv) throws Exception {
                new xxxxxx().go();
                }
}

In between the beginning and the ending statements defining the network, you specify a list of 
connections, using the following methods, which I will refer to as "clauses": 

• component - define an instance of a component (an FBP "process") 

• connect - define a connection 

• initialize - define a connection including an Initial Information Packet (IIP) 

• port - define a port on a process 

Every component instance must have a unique character string identifying it, which allows other 
component instances or initial information packets (IIPs) to be attached to it via a connection. 

The following method call: 
component("xxxx")
returns a reference to a component  instance. The first  reference to this particular component 
instance must specify the component class to be executed by that occurrence. This is done by 
coding 
component("xxxx", cccc.class) 

where cccc  is the name of the Java module to be executed. 

Similarly, a port is identified by a port clause, e.g. port("xxxx").
A port may be an array-type port, in which case the port clauses referring to its elements have 
index values, as follows: 
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port("xxxx",n)

where "n" runs up monotonically from 0. Each element of the port array will be connected to a 
different component occurrence or IIP. 

A connect or initialize clause may contain the relevant component clauses, together with 
their corresponding port clauses, embedded within it, as e.g. 

     connect(component("Read", ReadText.class),
         port("OUT"),
         component("Splitter1", Splitter1.class),
         port("IN"));

or  the  connect and  component portions  may  be  in  separate  statements,  provided 
component precedes any connects that reference it. 

A connect contains: 

• "from" component clause 

• "from" port clause 

• "to" component clause 

• "to" port clause 

Optionally a connect may have a fifth parameter: the connection capacity, specified as an int. 
 If this is omitted, the default value is used: 1 for testing, or 10 for production (this currently has 
to be changed by hand in the Network.class).  

If an asterisk (*) is specified for the "from" port, this is called an "automatic output port", and 
indicates a signal generated when the "from" component instance terminates (actually the port is 
just closed, so no packet has to be disposed of).  

If an asterisk is specified for the "to" port, this is called an "automatic input port", and indicates a 
delay - the "to" component instance does not start until a signal or a close is received at this port.

If  *SUBEND is specified as a port name on a subnet, a packet containing null is emitted at this 
port every time the subnet deactivates, i.e. all the contained components terminate.  It doesn't 
have to be named in the port metadata.  This null packet is emitted for all activations, including 
the last one. 

An initialize clause contains: 

• a reference to any object 
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• a component clause 

• a port clause 

as e.g.

     initialize(new FileReader(
              "c:\\com\\jpmorrsn\\eb2engine\\test\\data\\myXML3.txt"),
           component("Read"),
           port("SOURCE"));
  

However, it has been recommended that IIPs should be strings, rather than arbitrary objects, to 
facilitate future graphical management of networks.

One last point: any number of "from" ports can be connected to a single "to" port; only one "to" 
port can ever be connected to a given "from" port.

Sample Network
Let us code up a network implementing the following picture:

 

First  list  the  component clauses,  together  with  the  component  classes  they are  to  execute 
(assuming  that  component  classes  have  been  written  to  execute  the  various  nodes  of  the 
diagram), e.g.: 

 
  component("Read Masters",Read.class) 
  component("Read Details",Read.class)
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  component("Collate",Collate.class)
  component("Process Merged Stream",Proc.class) 
  component("Write New Masters",Write.class)
  component("Summary & Errors",Report.class)

Now these  component clauses may either be made into separate statements or they can be 
imbedded into the  connect statements that follow.  Here are the connections in the diagram, 
without imbedded component clauses:

  connect(component("Read Masters"),port("OUT"),component("Collate"),
     port("IN",0));                      // array port  
  connect(component("Read Details"),port("OUT"),component("Collate"),
     port("IN",1));                      // array port  
  connect(component("Collate"),port("OUT"),
     component("Process Merged Stream"), port("IN"));  
  connect(component("Process Merged Stream"),port("OUTM"),
     component("Write New Masters"),port("IN"));  
  connect(component("Process Merged Stream"),port("OUTSE"),
     component("Summary & Errors"),port("IN"));

Each item in this list is a separate Java statement. 

We can now add the class designation to the first  component clause referencing a particular 
component occurrence, giving the following: 

  
  connect(component("Read Masters",Read.class),port("OUT"),
     component("Collate",Collate.class), port("IN",0));   // array port  
  connect(component("Read Details",Read.class),port("OUT"),
     component("Collate"),port("IN",1));                  // array port  
  connect(component("Collate"),port("OUT"),
     component("Process Merged Stream",Proc.class),port("IN"));  
  connect(component("Process Merged Stream"),port("OUTM"),
     component("Write New Masters",Write.class),port("IN"));  
  connect(component("Process Merged Stream"),port("OUTSE"),
     component("Summary & Errors",Report.class),port("IN"));      

Now "Read Masters" and "Read Details" use the same Java class,  so we need some way to 
indicate the name of the file that each is going to read. This is done using Initial Information 
Packets (IIPs). In this case they might usefully specify FileReader objects, so we need to add two 
initialize clauses, as follows: 
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  initialize(new FileReader("c:\\mastfile"),
                        component("Read Masters"),
                        port("SOURCE"));
  initialize(new FileReader("c:\\detlfile"),
                        component("Read Details"),
                        port("SOURCE"));

Note that, since both "Read" component occurrences use the same class code, they naturally have 
the same port names - of course, the ports are attached to different IIPs. 

Remember that back-slashes have to be doubled in Java character strings! 

"Write New Masters" will have to have an IIP to specify the output destination - perhaps: 

  
  initialize(new FileWriter("c:\\newmast"),
                        component("Write New Masters"),
                        port("DESTINATION"));

Note also that this IIP is not a destination for the Writer - it is an object used by this component 
occurrence so that the latter can figure out where to send data to. 

Add the beginning and ending statements, and you're done!   The actual sequence of connect 
and initialize statements is irrelevant.

Here is the final result:

  
public class xxxxxx extends Network {
  protected void define() {
    connect(component("Read Masters",Read.class),port("OUT"),
      component("Collate",Collate.class),port("IN",0)); // array port  
    connect(component("Read Details",Read.class),port("OUT"),
      component("Collate"),port("IN",1));// array port  
    connect(component("Collate"),port("OUT"),
      component("Process Merged Stream",Proc.class),port("IN"));  
    connect(component("Process Merged Stream"),port("OUTM"),
      component("Write New Masters",Write.class),port("IN"));  
    connect(component("Process Merged Stream"),port("OUTSE"),
      component("Summary & Errors",Report.class),port("IN"));
    initialize(new FileReader("c:\\mastfile"),
      component("Read Masters"),
      port("SOURCE"));
    initialize(new FileReader("c:\\detlfile"),
      component("Read Details"),
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      port("SOURCE"));
    initialize(new FileWriter("c:\\newmast"),
      component("Write New Masters"),
      port("DESTINATION"));
    }
  public static void main(String[] argv) throws Exception{   
             // as of JavaFBP-2.4     
     new xxxxxx().go();
  }
}

Alternative (Simplified) Notation (JavaFBP-2.0+)
In the latest release of JavaFBP, we have introduced a new, simplified notation, in addition to 
that shown above.  In this notation connect specifies two character strings, and initialize 
specifies an object and a character string.   In both cases, the second character string specifies a 
combination of component and port, with the two parts separated by a period. Array port indices, 
if required, are specified using square brackets, e.g. 
"component.port[3]" 
The old port notation will still be supported, but is only really needed when the port index is a 
variable.  When debugging, it will be noted that the square bracket notation is used in trace lines, 
even when it was not used in the network definition.

Component names must of course not include periods or most special characters, but they may 
include  blanks,  numerals,  hyphens  and  underscores,  and  they  must  be  associated  with  their 
implementing class using a (preceding) component statement.

Here is the above network using the new notation:

 
public class xxxxxx extends Network {
 protected void define() {
   component("Read Masters",Read.class); 
   component("Read Details",Read.class);
   component("Collate",Collate.class);
   component("Process Merged Stream",Proc.class); 
   component("Write New Masters",Write.class);
   component("Summary & Errors",Report.class);
   connect("Read Masters.OUT", "Collate.IN[0]");
   connect("Read Details.OUT", "Collate.IN[1]");  
   connect("Collate.OUT"), "Process Merged Stream.IN"); 
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   connect("Process Merged Stream.OUTM", "Write New Masters.IN"); 
   connect("Process Merged Stream.OUTSE", "Summary & Errors.IN");
   initialize(new FileReader("c:\\mastfile"), "Read Masters.SOURCE");
   initialize(new FileReader("c:\\detlfile"), "Read Details.SOURCE");
   initialize(new FileWriter("c:\\newmast"), 
              "Write New Masters.DESTINATION");
   }
  
public static void main(String[] argv) throws Exception {
                 // as of JavaFBP-2.4 
        new xxxxxx().go();
   }
  }

Here  is  a  network  example  showing  how  variable  port  numbers  can  be  used  with  the 
LoadBalance function to define an (admittedly fairly trivial) self-balancing network.  This also 
shows a slightly different way of specifying the define function.

public class TestLoadBalancer {
  public static void main(final String[] args) {
    try {
      new Network() {
        @Override
        protected void define() {
          int multiplex_factor = 10;
          component("generate", Generate.class);
          component("display", WriteToConsole.class);
          component("lbal", LoadBalance.class);
          connect("generate.OUT", "lbal.IN");
          initialize("100 ", component("generate"), port("COUNT"));
          for (int i = 0; i < multiplex_factor; i++) {
            connect(component("lbal"), port("OUT", i), 
                component("passthru" + i, Passthru.class), port("IN"));
            connect(component("passthru" + i), port("OUT"), "display.IN");
          }
        }
      }.go();
    } catch (Exception e) {
      System.err.println("Error:");
      e.printStackTrace();
    }
  }
}
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Sample JavaFBP Component

A more complete description of the API is given in the next section.
This component generates a stream of 'n' IPs, where 'n' is specified in an InitializationConnection 
(specified by an initialize clause in the foregoing). Each IP just contains an arbitrary string 
of characters, in order to illustrate the concept.  Of course any copyright information included is 
up to the developer. 

package com.jpmorrsn.fbp.components;

import com.jpmorrsn.fbp.engine.*;

/** Component to generate a stream of 'n' packets, where 'n' is
* specified in an InitializationConnection.
*/

@OutPort(value = "OUT", description = "Generated stream", 
       type = String.class)
@ComponentDescription(
       "Generates stream of packets under control of a counter")
@InPort(value = "COUNT", 
       description = "Count of packets to be generated", 
       type = String.class)
public class Generate extends Component {
static final String copyright = "Copyright .....";
        OutputPort outport;
        InputPort count;

  @Override
  protected void execute() {
    Packet ctp = count.receive();
    if (ctp == null) {
      return;
    }
    count.close();
    String cti = (String) ctp.getContent();
    cti = cti.trim();
    int ct = 0;
    try {
      ct = Integer.parseInt(cti);
    } catch (NumberFormatException e) {
      e.printStackTrace();
    }
    drop(ctp);
    for (int i = 0; i < ct; i++) {
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      int j = ct - i;
      Integer j2 = new Integer(j);
      String s = j2.toString();
      if (j < 10) {
        s = "0" + s;
      }
      if (j < 100) {
        s = "0" + s;
      }
      s = s + "abc";
      Packet p = create(s);
      outport.send(p);
    }
  }
 /* As of JavaFBP-2.3, the information in introspect() is now covered 
  by the metadata, which has at the same time been expanded to add 
  descriptive information.
  introspect() is no longer needed - it will be ignored if present.
        public Object[] introspect() {  // was 'private' - must be 'public'
                return new Object[] {
                "generates a set of Packets under control of a counter" ,
                "OUT", "output", String.class,
                        "lines read",
                "COUNT", "parameter", Integer.class,
                        "Count of number of entities to be generated"};
                }
   */
@Override
        protected void openPorts() {
                outport = openOutput("OUT");
                count = openInput("COUNT");
                
                }
}

The scheduling rules for most FBP implementations are described in the chapter of my book 
called Scheduling Rules. 

The previous Java implementation of FBP (javaFBP-1.5.3) presents an IIP to a component once 
per activation. This has been changed as of JavaFBP-2.0 to once per invocation.  In practice this 
will only affect "non-loopers" (components that get reactivated multiple times).   

There are a few minor changes to component code as of JavaFBP-2.0: 

• As good programming practice, we now feel that IIP ports should be closed after a receive 
has been executed, in case it is attached to an upstream component (rather than an IIP), 
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and that component mistakenly sends more than one IP - this statement has accordingly 
been added to the above example. 

• The drop statement now takes the packet as a parameter, rather than being a method of 
Packet. 

• The send is now unconditional - it either works or crashes. 
• We are adding a "long wait" state to components, specifying a timeout value in seconds. 

This is coded as follows: 
      double _timeout = 2;   // 2 secs
          ....
      longWaitStart(_timeout);    
                                           
    //   activity taking time goes here
      longWaitEnd(); 

• Typically,  the  timeout  value  is  given a  default  value  in  the  code,  and overridden (if 
desired) by an IIP. 

• While the component in question is executing the activity taking time, its state will be set 
to  "long  wait".  If  one  or  more  components  are  in  "long  wait"  state  while  all  other 
components  are  suspended  or  not  started,  this  situation  is  not  treated  as  a  deadlock. 
However, if one of the components exceeds its timeout value, an error will be reported 
(Complain). 

and a major change - metadata, as shown in the above component.  This works as follows:

• Input  and output  port  names will  be coded on components  using Java 5.0 "attribute" 
notation. This metadata can be used to do analysis of networks without having to actually 
execute the components involved. Here is an example of the attributes for the "Collate" 
component: 
    @OutPort("OUT") 
    @InPorts({
      @InPort("CTLFIELDS"), 
      @InPort(value = "IN", arrayPort = true)
      })  
    public class Collate extends Component {

• Note that, as Java metadata does not (as far as I know) support multiple entries with the 
same name, we have provided the additional metadata terms @InPorts and @OutPorts. 
When only one is needed (as for @Outport in this example) the "plural" term can be 
omitted. 

• As shown above for "CTLFIELDS", when no attributes are needed within an @InPort or 
@OutPort statement, the short notation (no "value" clause) can be used. 
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• Input ports do not necessarily have to be connected, even though attributes are specified 
for them; output ports, however, must be. 

• MustRun   is also specified as metadata, rather than as an interface, as it was in version 
1.5.3, i.e. 
    @MustRun

A new service has been added for component code as of JavaFBP-2.2: 

• <output port name>.isConnected returns boolean 

To  support  isConnected,  a  new  metadata  attribute  called  optional has  been  added  to 
@OutPort, e.g. 

• @OutPort(value = "OUT", optional = true)

JavaFBP Component API
Component Metadata:
Note: when "value" is the only parameter, the "short" form 
   (see above) can be used
@ComponentDescription
  parameters:
    - value (String)
@InPort
  parameters:
    - value (String)
    - arrayPort (boolean)
    - description (String)
    - type (class)
@OutPort
  parameters:
    - value (String)
    - arrayPort (boolean)
    - description (String)
    - type (class)
    - optional (boolean)
@InPorts
  parameter: list of @InPort references, e.g. @InPorts( { @InPort("IN"), 
     @InPort("TEST") })
@OutPorts
  parameter: list of @OutPort references, e.g. @OutPorts( { @OutPort("ACC"), 
     @OutPort("REJ") })
@MustRun
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@Priority(Thread.MAX_PRIORITY)   // default is NORM_PRIORITY

Packet class:
/** 
* A Packet may either contain an Object, when type is NORMAL,
* or a String, when type is not NORMAL.  The latter case
* is used for things like open and close brackets (where the 
* String will be the name of a group. e.g. accounts) 
**/
Object getAttribute(String key);  /* key accesses a specific attribute */
Object getContent();  /* returns null if type <> NORMAL */

Component class:
/** 
* All verbs must extend this class, defining its two abstract methods:
* openPorts, and execute. 
**/
Packet p = create(Object o);
Packet p = create(Packet.type (int) t, String s);
drop(Packet p);   //  Note this change! 
longWaitStart(double interval);   // in seconds
longWaitEnd();
/** 3 stack methods - as of JavaFBP-2.3
**/
push (Packet p);
Packet p = pop();  // return null if empty
int stackSize();

InputPort interface:
Packet = receive();
void close();

OutputPort class:
void send(Packet packet); 
boolean isConnected();  // as of 2.2
void close();
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Appendix C: Syntax of C#FBP  (C# Implementation of FBP) 
and Component API

Network Definitions 
In my book, "Flow-Based Programming", I describe the syntax of the network specifications of 
various  FBP  dialects  that  were  in  existence  when  the  book  was  written.  C#FBP,  the  C# 
implementation of the FBP concepts, did not exist at that time, so this web page has been added 
describing the syntax of C#FBP network definitions. 

In C#FBP we not only code components in C# but also define the networks as C# programs.  The 
source code is on SourceForge under Subversion (SVN) for the SourceForge project Flow-Based 
Programming .

There is also a zip file - C#FBP zip file - on the FBP web site.

One advantage of defining the network as executable code, as compared with other approaches 
that  merely  list  connections  in  a  language-independent  way,  is  that  the network can contain 
additional logic. This logic then controls the way the network is defined, rather than the way it 
runs. Some may regard this as a defect, rather than as an asset, and both views can certainly be 
defended, but one of the neat things it enables us to do is to adjust multiplexing levels of various 
structures in the diagram using a table of values (remember the multiplexing example in Sample 
DrawFlow Diagram). One merely retrieves a value from a table for the degree of multiplexing in 
a particular structure in the diagram, and this value is then used both as the index of a loop 
invoking the  connect statement, and as the index for the elements of an array-type port (see 
below for both of these terms). 

Since the way the syntax relates to the underlying diagram may not be all that clear, a brief 
description is in order.  At the end of this page, I have given an extremely simple C#FBP 
component.

Any C#FBP network definition starts as follows:
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using System;
using FBPComponents;
using FBPLib;
namespace nnnnnnnnn
{
    public class xxxxxx : Network
    {  
        public override void Define()  {

where  xxxxxx is  the  Network  name,  including  the  usual  usings,  copyright  statements, 
namespace specification, etc. 

The network definition is terminated with: 

}
        internal static void Main(String[] argv)
        {
            new xxxxx().Go();
        }
    }

In between the beginning and the ending statements defining the network, you specify a list of 
connections, using the following methods, which I will refer to as "clauses": 

• Component - define an instance of a component (an FBP "process") 

• Connect - define a connection 

• Initialize - define a connection including an Initial Information Packet (IIP) 

• Port - define a port on a process 

Every component instance must have a unique character string identifying it, which allows other 
component instances or initial information packets (IIPs) to be attached to it via a connection. 

The following method call: 
Component("xxxx")
returns a reference to a component  instance. The first  reference to this particular component 
instance must specify the component class to be executed by that occurrence. This is done by 
coding 
Component("xxxx", typeof(cccc)) 

where cccc  is the name of the C# module to be executed. 
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Similarly, a port is identified by a Port clause, e.g. Port("xxxx").
A port may be an array-type port, in which case the port clauses referring to its elements have 
index values, as follows: 
Port("xxxx",n)

where "n" runs up monotonically from 0. Each element of the port array will be connected to a 
different component occurrence or IIP. 

A Connect or Initialize clause may contain the relevant Component clauses, together with 
their corresponding Port clauses, embedded within it, as e.g. 

     Connect(Component("Read", typeof(ReadText)),
         Port("OUT"),
         Component("Splitter1", typeof(Splitter1)),
         Port("IN"));

or the Connect and Component portions may be in separate statements, provided Component 
precedes any Connects that reference it. 

A Connect contains: 

• "from" Component clause 

• "from" Port clause 

• "to" Component clause 

• "to" Port clause 

Optionally a Connect may have a fifth parameter: the connection capacity, specified as an int. 
 If this is omitted, the default value is used: 1 for testing, or 10 for production (this currently has 
to be changed by hand in the Network.class).  

If an asterisk (*) is specified for the "from" port, this is called an "automatic output port", and 
indicates a signal generated when the "from" component instance terminates (actually the port is 
just closed, so no packet has to be disposed of).  

If an asterisk is specified for the "to" port, this is called an "automatic input port", and indicates a 
delay - the "to" component instance does not start until a signal or a close is received at this port.

If *SUBEND is specified as a port name on a subnet, a packet containing null is emitted at this 
port every time the subnet deactivates, i.e. all the contained components terminate.  It doesn't 
have to be named in the port metadata.  This null packet is emitted for all activations, including 
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the last one.

An Initialize clause contains: 

• a reference to any object 

• a Component clause 

• a Port clause 

as e.g.

     Initialize(new StreamReader(
               @"c:\com\jpmorrsn\eb2engine\test\data\myXML3.txt"),
           Component("Read"),
           Port("SOURCE"));
  

However, it has been recommended that IIPs should be strings, rather than arbitrary objects, to 
facilitate future graphical management of networks.

One last point: any number of "from" ports can be connected to a single "to" port; only one "to" 
port can ever be connected to a given "from" port.

Sample Network
Let us code up a network implementing the following picture:

 

First  list  the  Component clauses,  together  with  the  component  classes  they  are  to  execute 
(assuming  that  component  classes  have  been  written  to  execute  the  various  nodes  of  the 

- 356 -



Appendix C: Syntax of C#FBP  (C# Implementation of FBP) and Component API

diagram), e.g.: 

 
  Component("Read Masters",typeof(Read)) 
  Component("Read Details",typeof(Read))
  Component("Collate",typeof(Collate))
  Component("Process Merged Stream",typeof(Proc)) 
  Component("Write New Masters",typeof(Write))
  Component("Summary & Errors",typeof(Report))

Now these  Component clauses  may either  be made into separate  statements  or they can be 
imbedded into the  Connect statements that follow.  Here are the connections in the diagram, 
without imbedded Component definitions:

  Connect(Component("Read Masters"),Port("OUT"),Component("Collate"),
     Port("IN",0));                      // array port  
  Connect(component("Read Details"),Port("OUT"),Component("Collate"),
     Port("IN",1));                      // array port  
  Connect(component("Collate"),Port("OUT"),Component("Process Merged Stream"),
     Port("IN"));  
  Connect(Component("Process Merged Stream"),Port("OUTM"),
     Component("Write New Masters"),Port("IN"));  
  Connect(Component("Process Merged Stream"),Port("OUTSE"),
     Component("Summary & Errors"),Port("IN"));

Each item in this list is a separate C# statement. 

We can now add the class designation to the first  Component clause referencing a particular 
component occurrence, giving the following: 

  
  Connect(Component("Read Masters",typeof(Read)),Port("OUT"),
     Component("Collate",typeof(Collate)), Port("IN",0));   // array port  
  Connect(Component("Read Details",typeof(Read)),Port("OUT"),
     Component("Collate"),Port("IN",1));                  // array port  
  Connect(Component("Collate"),Port("OUT"),
     Component("Process Merged Stream",typeof(Proc)),Port("IN"));  
  Connect(Component("Process Merged Stream"),Port("OUTM"),
     Component("Write New Masters",typeof(Write)),Port("IN"));  
  Connect(Component("Process Merged Stream"),Port("OUTSE"),
     Component("Summary & Errors",typeof(Report)),Port("IN"));    
  

Now "Read Masters" and "Read Details" use the same C# class, so we need some way to indicate 
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the name of the file that each is going to read. This is done using Initial Information Packets 
(IIPs). In this case they might usefully specify StreamReader objects,  so we need to add two 
Initialize clauses, as follows: 

  
  Initialize(new StreamReader(@"c:\mastfile"),
                        Component("Read Masters"),
                        Port("SOURCE"));
  Initialize(new StreamReader(@"c:\detlfile"),
                        Component("Read Details"),
                        Port("SOURCE"));

Note that, since both "Read" component occurrences use the same class code, they naturally have 
the same port names - of course, the ports are attached to different IIPs. 

Remember that back-slashes have to be doubled in C# character strings, unless you precede the 
string with an @-sign. 

"Write New Masters" will have to have an IIP to specify the output destination - perhaps: 

  
  Initialize(new StreamWriter(@"c:\newmast"),
                        Component("Write New Masters"),
                        Port("DESTINATION"));

Note also that this IIP is not a destination for the Writer - it is an object used by this component 
occurrence so that the latter can figure out where to send data to. 

Add the beginning and ending statements, and you're done!   The actual sequence of Connect 
and Initialize statements is irrelevant.

Here is the final result:

using System;
using FBPComponents;
using FBPLib;
namespace nnnnnnnnn
{
    public class xxxxxx : Network
    {  
    public override void Define()  {
     Connect(Component("Read Masters",typeof(Read)),Port("OUT"),
     Component("Collate",typeof(Collate)), Port("IN",0));   // array port  
     Connect(Component("Read Details",typeof(Read)),Port("OUT"),
     Component("Collate"),Port("IN",1));                  // array port  
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     Connect(Component("Collate"),Port("OUT"),
     Component("Process Merged Stream",typeof(Proc)),Port("IN"));  
     Connect(Component("Process Merged Stream"),Port("OUTM"),
     Component("Write New Masters",typeof(Write)),Port("IN"));  
     Connect(Component("Process Merged Stream"),Port("OUTSE"),
     Component("Summary & Errors",typeof(Report)),Port("IN")); 
     Initialize(new StreamReader(@"c:\mastfile"),
                        Component("Read Masters"),
                        Port("SOURCE"));
     Initialize(new StreamReader(@"c:\detlfile"),
                        Component("Read Details"),
                        Port("SOURCE"));  
     Initialize(new StreamWriter(@"c:\newmast"),
                        Component("Write New Masters"),
                        Port("DESTINATION")); 
    
}
        internal static void Main(String[] argv)
        {
            new xxxxx().Go();
        }
    }

Alternative (Simplified) Notation 
In  C#FBP there  is  a  simplified  notation,  in  addition  to  that  shown  above.  In  this  notation 
Connect specifies two character strings, and Initialize specifies an object and a character 
string.   In both cases, the second character string specifies a combination of component and port, 
with the two parts separated by a period.  Array port indices, if required, are specified using 
square brackets, e.g. 
"component.port[3]" 
The old port notation will still be supported, but is only really needed when the port index is a 
variable.  When debugging, it will be noted that the square bracket notation is used in trace lines, 
even when it was not used in the network definition.

Component names must of course not include periods or most special characters, but they may 
include  blanks,  numerals,  hyphens  and  underscores,  and  they  must  be  associated  with  their 
implementing class using a (preceding) Component statement.

Here is the above network using the new notation:
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 using System;
using FBPComponents;
using FBPLib;
namespace nnnnnnnnn
{
    public class xxxxxx : Network
    {  
    public override void Define()  {
   Component("Read Masters",typeof(Read)); 
   Component("Read Details",typeof(Read));
   Component("Collate",typeof(Collate));
   Component("Process Merged Stream",typeof(Proc)); 
   Component("Write New Masters",typeof(Write));
   Component("Summary & Errors",typeof(Report));
   Connect("Read Masters.OUT", "Collate.IN[0]");
   Connect("Read Details.OUT", "Collate.IN[1]");  
   Connect("Collate.OUT"), "Process Merged Stream.IN"); 
   Connect("Process Merged Stream.OUTM", "Write New Masters.IN"); 
   Connect("Process Merged Stream.OUTSE", "Summary & Errors.IN");
   Initialize(new FileReader("c:\\mastfile"), "Read Masters.SOURCE");
   Initialize(new FileReader("c:\\detlfile"), "Read Details.SOURCE");
   Initialize(new FileWriter("c:\\newmast"), "Write New Masters.DESTINATION");
   }
   internal static void Main(String[] argv)
        {
            new xxxxx().Go();
        }
   }
  }

Here  is  a  network  example  showing  how  variable  port  numbers  can  be  used  with  the 
LoadBalance function to define an (admittedly fairly trivial) self-balancing network.  

 using System;
using FBPComponents;
using FBPLib;
namespace nnnnnnnnn
{
    public class TestLoadBalancer : Network
    {  
    public override void Define() {
          int multiplex_factor = 10;
          Component("generate", typeof(Generate));
          Component("display", typeof(WriteToConsole));
          Component("lbal", typeof(LoadBalance));
          Connect("generate.OUT", "lbal.IN");
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          Initialize("100 ", Component("generate"), Port("COUNT"));
          for (int i = 0; i < multiplex_factor; i++) {
            Connect(Component("lbal"), Port("OUT", i), 
                  Component("passthru" + i, typeof(Passthru)), Port("IN"));
            Connect(Component("passthru" + i), Port("OUT"), "display.IN");
          }
        }
     
    internal static void Main(String[] argv)
        {
            new TestLoadBalancer().Go();
        } 
    }
}

Sample C#FBP Component

A more complete description of the API is given in the next section.
This component generates a stream of 'n' IPs, where 'n' is specified in an InitializationConnection 
(specified by an Initialize clause in the foregoing). Each IP just contains an arbitrary string 
of characters, in order to illustrate the concept.  Of course any copyright information included is 
up to the developer. 

using System;
using FBPLib;
namespace FBPComponents
{
    /** Component to generate a stream of 'n' packets, where 'n' is
    * specified in an InitializationConnection.
    */
    [InPort("COUNT", description="Number of packets", type=typeof(System.String))]
    [OutPort("OUT")] 
    [ComponentDescription("Generate stream of packets based on count")]
    public class Generate : Component
    {
        internal static string _copyright =
            "Copyright ....";
        OutputPort _outport;
        IInputPort _count;
        public override void Execute() /* throws Throwable */ {
            Packet ctp = _count.Receive();
            string param = ctp.Content.ToString();
            Int32 ct = Int32.Parse(param);
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            Drop(ctp);
            _count.Close();
            for (int i = ct; i > 0; i--)
            {
                string s = String.Format("{0:d6}", i) + new String('a', 1000);
                Packet p = Create(s);
                _outport.Send(p);
            }
            // output.close();
            // terminate();
        }
        /*
        As of C# 2.0, Introspect has been replaced by the metadata
        public override System.Object[] Introspect()
        {
            return new Object[] {
                "generates a set of Packets under control of a counter" ,
                "OUT", "output", Type.GetType("System.String"),
                        "lines generated",
                "COUNT", "parameter", Type.GetType("System.String"),
                        "Count of number of entities to be generated"};
        }
        */
        public override void OpenPorts()
        {
            _outport = OpenOutput("OUT");
          
            _count = OpenInput("COUNT");
           
        }
    }
}

The scheduling rules for most FBP implementations are described in the chapter of my book 
called Scheduling Rules. 

The previous C# implementation of FBP (C#FBP-1.5.3) presents an IIP to a component once per 
activation.  This  has  been  changed  in  the  latest  implementation  (C#FBP-2.0)  to  once  per 
invocation.  In  practice  this  will  only  affect  "non-loopers"  (components  that  get  reactivated 
multiple times).   

There are a few minor changes to component code for C#FBP-2.0: 

• As good  programming  practice,  we  now feel  that  IIP  ports  should  be  closed  after  a 
Receive has been executed, in case it is attached to an upstream component (rather than 
an IIP),  and that  component  mistakenly sends  more than one IP -  this  statement  has 
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accordingly been added to the above example. 
• The Drop statement now takes the packet as a parameter, rather than being a method of 

Packet. 
• The Send is now unconditional - it either works or crashes. 
• We are adding a "long wait" state to components, specifying a timeout value in seconds. 

This is coded as follows: 
      double _timeout = 2;   // 2 secs
          ....
      LongWaitStart(_timeout);    
                                           
    //   activity taking time goes here
      LongWaitEnd(); 

• Typically,  the  timeout  value  is  given a  default  value  in  the  code,  and overridden (if 
desired) by an IIP. 

• While the component in question is executing the activity taking time, its state will be set 
to  "long  wait".  If  one  or  more  components  are  in  "long  wait"  state  while  all  other 
components  are  suspended  or  not  started,  this  situation  is  not  treated  as  a  deadlock. 
However, if one of the components exceeds its timeout value, an error will be reported 
(Complain). 

and a major change - metadata, as shown in the above component.  This works as follows:

• Input  and  output  port  names  will  be  coded  on  components  using  C#  5.0  "attribute" 
notation. This metadata can be used to do analysis of networks without having to actually 
execute the components involved. Here is an example of the attributes for the "Collate" 
component: 
    [InPort("CTLFIELDS")]
    [InPort("IN", arrayPort = true)]
    [OutPort("OUT")]
    [ComponentDescription("Collates input streams at array port IN and 
sends them to port OUT")]
    public class Collate : Component {

• Input ports do not necessarily have to be connected, even though attributes are specified 
for them; output ports, however, must be. 

• MustRun   is also specified as metadata, rather than as an interface, as it was in version 
1.5.3,  i.e. 

         [MustRun] 

A new service has been added for component code for C#FBP-2.2: 
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• <output port name>.IsConnected returns bool 

To  support  IsConnected,  a  new  metadata  attribute  called  optional has  been  added  to 
OutPort, e.g. 

• [OutPort("OUT",optional=true)]

C#FBP Component API
Component Metadata:
[ComponentDescription]
  parameters:
    - string
[InPort]
  parameters:
    - string
    - arrayPort (bool)
    - description (string)
    - type (typeof(...))
[OutPort]
  parameters:
    - string
    - arrayPort (bool)
    - description (string)
    - type (typeof(...))
    - optional (bool)
[MustRun]
[Priority(ThreadPriority.Highest)]   // default is ThreadPriority.Lowest

Packet class:
/** 
* A Packet may either contain an Object, when type is NORMAL,
* or a String, when type is not NORMAL.  The latter case
* is used for things like open and close brackets (where the 
* String will be the name of a group. e.g. accounts) 
**/
Dictionary Attributes;  /* returns attributes */
Object Content;         /* returns null if type <> Normal */
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Component class:
/** 
* All verbs must extend this class, defining its two abstract methods:
* openPorts, and execute. 
**/
Packet p = Create(Object o);
Packet p = Create(Packet.Types type, string s);
Drop(Packet p);   //  Note this change! 
LongWaitStart(double interval);   // in seconds
LongWaitEnd();
/** 3 stack methods - as of JavaFBP-2.3
**/
Push (Packet p);
Packet p = Pop();  // return null if empty
int StackSize();

IInputPort interface:
Packet = Receive();
void Close();

OutputPort class:
void Send(Packet packet); 
bool IsConnected();  // as of 2.2
void Close();
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Appendix D: FBP Drawing Tool (DrawFBP)

Several  years  ago,  a picture-drawing tool which supports  many of the concepts  of FBP was 
written in C++ for Windows. It can still be obtained by clicking here: DrawFBP-C++ (you may 
have to shift and click), and is also available on SourceForge, but it has now been superseded by 
a Java version, which can be obtained by clicking here:  DrawFBP Installer (you may have to 
shift and click), and this is also available on SourceForge - look for the latest version. It can also 
be downloaded and executed by clicking on JWS version of DrawFBP. 

DrawFBP does  not  attempt  to  generate  diagrams from text  -  we have seen too many failed 
attempts at this - instead it allows the diagrammer to lay out the flow as desired, capturing the 
information from the diagram, including x-y coordinates of blocks and line bends, in an XML 
file. From this, the diagram can be rebuilt, plus it captures the relationships between processes 
and their connections, so it has enough information to generate the lists of connections used by 
FBP  (or  FBP-like)  schedulers.  The  new  version  of  DrawFBP  can  generate  working  FBP 
networks, prompting the user to fill in any needed information. 

DrawFBP  also  supports  step-wise  decomposition,  and  allows  files  and  reports  to  be  added 
symbolically to a design. Here is a sample diagram, showing an arrow in process of being drawn:
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A Help facility is available, based on Java SE Desktop Technologies JavaHelp System - this 
function does not require access to the Internet. 

DrawFBP can be executed directly from the author's web site, using Java Web Start (JWS), by 
entering  http://www.jpaulmorrison.com/graphicsstuff/DrawFBP.jnlp into the command 
line  of  your  favorite  browser.   Alternatively  it  can  be  downloaded  as  a  jar  file  from 
http://www.jpaulmorrison.com/graphicsstuff/DrawFBP-x.x.jar ,where  x.x is the latest 
release.
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4GL 4th Generation Language, typically generating HLL statements

AMPS Advanced Modular Processing System - first version of FBP used for 
production work (still in use at a major Canadian company) 

Applicative describes a language which does all of its processing by means of 
operators applied to values 

Asynchronous independent in time, unsynchronized 

Automatic ports
unnamed input or output ports used to respectively delay a process, or 
indicate termination of a process, without code needing to be added to the 
processes involved 

Brackets IPs of a special type used to demarcate groupings of IPs within IP streams 
C#FBP C# implementation of FBP concepts. For more information, see C#FBP .
Capacity the maximum number of IPs a connection can hold at one time 
Component Reusable piece of code or reusable subnet 
Composite 
Component Component comprising more than one process (same as subnet) 

Connection
Path between two processes, over which a data stream passes; connections 
have finite capacities (the maximum number of IPs they can hold at one 
time) 

Connection Points The point where a connection makes contact with a component 
Control IP an IP whose life-time corresponds exactly to the lifetime of a substream, 
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which it can be said to "represent" 
Coroutine an earlier name for an FBP process 

Descriptor read-only module which can be attached to an IP describing it to 
generalized components 

DFDM Data Flow Development Manager, dialect of FBP - went on sale in Japan - 
sold several licences

DrawFBP FBP diagramming tool, written in Java. For more information, see 
DrawFBP .

Elementary 
Component Component which is not a composite component 

FBP Flow-Based Programming

FPE Flow Programming Environment - product that was to follow DFDM. It 
was developed quite far theoretically, but never reached the marketplace

Granularity "Grain" size - see Chap. XXII - Performance Considerations
Higher-Level 
Language (HLL)

a language intermediate in level between Lower-Level Languages (e.g. 
Assembler) and 4th Generation Languages (4GLs) 

Information Packet 
(IP)

an independent, structured piece of information with a well-defined 
lifetime (from creation to destruction)  

Initial Information 
Packet (IIP)

data specified in the network definition, usually used as a parameter for a 
reusable component; it is converted into a "real" IP by means of a 
"receive" service call; it is only supported by THREADS & JavaFBP 

JavaFBP Java implementation of FBP concepts. For more information, see JavaFBP 
.

JFBP Old name for Java implementation of FBP concepts - see JavaFBP.

Looper a component which does not exit after each IP has been handled, but 
"loops" back to get another one 

Non-looper a component which exits after each IP has been handled, rather than 
"looping" back to get another one 

OOP Object-Oriented Programming
Port The point where a connection makes contact with a process 
Root IP The root of a tree of IPs 
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Process Asynchronously executing piece of logic - in FBP, same as "thread" 
Stream Sequence of IPs passing across a given connection 
Substream-
sensitivity

a characteristic of some ports of a composite component where brackets 
are treated as end of data

Thread Same as "process" in FBP - often referred to as "lightweight" process

THREADS
C-based FBP implementation. The API is described in "THREADS API 
and Network Specification"). For the code, just click on THREADS (you 
may have to shift and click). 

Tree Complex structure of linked IPs, able to be sent and received as a single 
unit 

Synchronous Coordinated in time (at the same time) 

WYSIWYG "What You See Is What You Get" (describes a tool where the image 
shown to the developer closely matches the final result in appearance) 
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